Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Yamaguchi F. — Curves and surfaces in computer aided geometric design
Yamaguchi F. — Curves and surfaces in computer aided geometric design



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Curves and surfaces in computer aided geometric design

Àâòîð: Yamaguchi F.

Àííîòàöèÿ:

The material for the book started life as a set of notes for computer aided geometric design courses which I had at the graduate schools of both computer science, the university of Utah in U.S.A. and Kyushu Institute of Design in Japan. The book has been used extensively as a standard text book of curves and surfaces for students, practical engineers and researchers.


ßçûê: en

Ðóáðèêà: Computer science/Âû÷èñëèòåëüíàÿ ãåîìåòðèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1988

Êîëè÷åñòâî ñòðàíèö: 379

Äîáàâëåíà â êàòàëîã: 25.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Acceleration, normal      27
Acceleration, tangential      27
Adini’s method      118 119
Approximation, B-spline-      233—336
Approximation, Bernstein-      169—232
APT system      3
Area of a surface      42 43 47 48
B-spline curve segment      233—334
B-spline curve segment, derivatives      309—311
B-spline curve segment, interpolation of a sequence of points      247 to 250 325—327
B-spline curve segment, matrix representation      327—329
B-spline curve segment, properties      311 312
B-spline curve type (1)      281 282
B-spline curve type (2)      283
B-spline curve type (3)      294—296
B-spline, B-spline function, approximation      233—336
B-spline, B-spline function, definition      270—273
B-spline, B-spline function, normalized      273
B-spline, B-spline function, properties      270—274 291—294
B-spline, B-spline function, recursive calculation      285—291
B-spline, B-spline function, relation to Bernstein basis      293 294
B-spline, B-spline function, variation diminishing property      294
Bernoulli — Euler law      135
Bernstein approximation      169—232
Bernstein approximation, derivatives      190
Bernstein approximation, properties      189—193
Bernstein approximation, smoothing effect      193
Bernstein basis function      183 189—193
Bernstein basis vector      195
Bernstein polynomial      174
Bezier curve segment      169—232
Bezier curve segment, connection      213 214
Bezier curve segment, derivatives      198 199
Bezier curve segment, finite difference representation      194 195
Bezier curve segment, increase of degree      204-209
Bezier curve segment, partitioning      209—212
Bezier curve segment, various representation      193—198
Bezier net      217
Bezier polygon      173
Bezier surface patch      216—232
Bezier surface patch, connection      221—226
Bilinear transformation      36
Binomial expansion      182 183
Binormal vector, unit-      28
Blending function      77
Boundary condition matrix      111
C-spline      139
Cartesian product surface patch      132 133
Cauchy’s relation      19
Chaikin’s algorithm      320—325
Characteristic net      217
Characteristic polygon      173
Circular arc, circle, approximation      78—80 177 178 243—245
Circular arc, circle, approximation by Bezier curve segments      177 178
Circular arc, circle, approximation by cubic B-spline curve segments      243 to 245
Circular arc, circle, approximation by Ferguson curve segments      78—80
Circular arc, circle, approximation error      80 178
Circular arc, circle, approximation, passing through 3 points      354 355
Common perpendicular, length      352 353
Condition for determining a tangent vector to a curve on a surface      48
Conic section      337—346
Connection of Bezier curve segments      213 214
Connection of Bezier surface patches      221—226
Connection of Coons bi-cubic surface patches      96 97 107—109
Connection of curve segments      33—35
Connection of Ferguson surface patches      89—91
Connection of surface patches      57—59
Continuity, clss $C^r$-      20 44
Control point      16
Convex combination      171 241 274
Convex hull property      241 311
Crease      15
Cross partial derivative vector      98 112—122
Cubic spline curves      145—160
Cubic spline curves, using circular arc length      159 160
Curvature      24—27
Curvature of a surface      49—51
Curvature vector      24—27
Curvature, average(mean)      51
Curvature, Gauss-      51
Curvature, normal      50
Curvature, principal      51
Curvature, radius      25
Curvature, total      51
Curve defining polygon      173
Curve generation by geometric processing      320—325
Curve segment, B-spline      233—334
Curve segment, Bezier-      169—232
Curve segment, conic section      337—346
Curve segment, cubic B-spline      233—251
Curve segment, cubic B-spline, geometrical relations among derivatives      342 343
Curve segment, cubic Bezier      169—182
Curve segment, cubic/cubic rational polynomial      346 347
Curve segment, Ferguson-      73—80
Curve segment, Hermite-      72—86
Curve segment, increase of degree      85 86 204—209
Curve segment, Lagrange-      64—71
Curve segment, non-uniform B-spline-      296
Curve segment, rational polynomial      337—350
Curve segment, T-comc      347—350
Curve segment, uniform cubic B-spline      233—251
Cusp      15
Cusp by cubic B-spline curve segments      245
De Boor’s algorithm      312—315
Degeneration of a surface patch      44
Degeneration, formation of triangular surface patch      59 to 61
Derivatives of B-sphne curve segments      309—311
Derivatives of Bernstein polynomials      198 199
Derivatives of Bezier curve segments      198 199
Descartes’ sign rule      192
Determination of a point by linear operations      199—204
Determination of a point on a B-sphne curve segment by linear operations      312—315
Determination of a point on a cubic Bezier curve segment      178 179
Divided difference      67
Divided difference, interpolation formula with remainder (Newton’s formula)      68
ellipse      340
Equation of a normal plane      23
Equation of a plane passing through 3 points      353
Equation of a straight line segment      351
Equation of a tangent plane      46
Equation of an osculating plane      23
Error in approximating a circle      80 178
Finite difference, computation      32 33
Finite difference, determination of a point, on a curve      32 33
Finite difference, determination of a point, on a surface      51—55
Finite difference, matrix      33 52—55
Finite difference, operator      32
Finite difference, representation of a Bezier curve segment      194 195
First fundamental matrix of a surface      46—48
FMILL      89
Forrest’s method      117
Frenet frame      29
Frenet — Serret formula      31
Function, B-spline-      236 237 270—273
Function, Bernstein basis-      182 183 189—193
Function, blending-      77
Function, Coons blending-      77
Function, full spline basis-      291
Function, Hermite-      72—83
Function, truncated power-      138
Function, uniform B-spline-      296
Functional determinant      44
Gauss curvature      51
Gauss quadrature      42
Hermite interpolation      72—134
Hermite polynomial      72 —134
Hyperbola      340
Increase of degree of a Bezier curve segment      204—209
Increase of degree of a Ferguson curve segment      85 86
Independence of coordinate axes      12—14
Interpolation, Hermite-      72—134
Interpolation, Lagrange-      64—71
Interpolation, of a sequence of points by a B-sphne curve      247—250 325—327
Interpolation, spline-      135—168
Intersection of 2 curves      43 44
Intersection of 3 planes      354
Intersection of a curve and a plane      43
Invariance of shape under coordinate transformation      18 19
Inverse transformation of a uniform cubic, B-sphne curve      247—250 325—327
Jacobian      44 60—62
Knot, additional      272
Knot, extended      272
Knot, insertion      316—320
Knot, interior      272
Knot, multiple      291
Knot, pseudo      292
Kronecker delta      92
Lagrange’s formula      65
Leibnitz’ formula      356
Length of a curve      42
Length of a curve, on a surface      47
Length of common perpendicular      352 353
Line segment by a Bezier curve segment      176 177
Line segment by a cubic B-spline curve segment      243
Line segment, perpendicular bisector      351
Local uniqueness      242
Marsden’s identity      358 359
Mathematical model      3 4
Matrix representation of a B-spline curve segment      327—329
Matrix, boundary condition-      111
Matrix, finite difference-      33 52—55
Matrix, first fundamental- (of a surface)      46—48
Matrix, second fundamental- (of a surface)      50
Minimal interpolation property      140—144
Model, mathematical      3 4
Model, physical      3 4
Moving frame      29
Net, surface defining-      217
Normal plane      23
Normal plane, equation      23
Normal vector, unit-      46
Normal, principal-      23
Normalized B-spline      273
Offset surfaces      63
Order of spline      136
Ordinary point      20
Osculating plane      23
parabola      342
Parametric cubic curve      31
Parametric representation of a curve      20
Parametric representation of a surface      44
Partitioning of Coons bi-cubic surface patches      122 123
Partitioning of cubic Bezier curve segments      179—182
Partitioning of curve segments      39
Partitioning of Ferguson curve segments      84 85
Pentagonal surface      9 10
Perpendicular bisector of a line segment      351 352
Physical model      3 4
Plane curve, condition to be      29
Plane, normal      23
Plane, osculating      23
Plane, passing through 3 points      353
Plane, rectifying      24
Plane, tangent      46
Plane, vector representation      353
Point, control-      16
Point, inflection-      27
Point, knot-      240
Point, ordinary      20
Point, regular      20
Point, singular      20
Polynomial, Bernstein-      189
Polynomial, Lagrange-      65
Power basis vector      195
Principal normal, vector, unit-      46
Principle of minimizing total bending energy      136 140
Product of differences      64
Property, minimal interpolation-      140—144
Property, of B-spline curve segments      311 312
Property, of Bernstein polynomials      189—193
Property, of Bezier curve segments      189—193
Property, variation diminishing-      192 294 312
Rectifying plane      24
Regular      20
Second fundamental matrix of a surface      50
Shape control, global      16 17
Shape control, local      16 17
Shape control, of a Coons bi-cubic surface patch      126—131
Shift operator      193 194
Singular point      20
SKETCHPAD      3 4
Space curve      14
Space curve, condition to be      29
Spatial uniqueness      11
SPLINE      135—168
Spline curve      145—160
Spline Function      136 137
Spline interpolation      135—168
Spline surface      163—168
Spline, basis-      160—163 270—273
Spline, bending rigidity      136
Spline, by Bezier curve segments      214—216
Spline, C-spline      139
Spline, end conditions of parametric-      151—159
Spline, fundamental      163
Spline, mathematical      136
Spline, minimal interpolation property      140—144
Spline, natural      138—144
Spline, periodic      159
Spline, physical      136
Spline, smoothing      144
Spline, stored bending energy      136
Spline, under tension      7
Subsphne basis      291
Surface of revolution      264
Surface of revolution by cubic B-spline curve segments      264—270
Surface patch, B-sphne-      334 335
Surface patch, Bezier-      216—226
Surface patch, bicubic Coons-      111 112
Surface patch, bilinear      100
Surface patch, Boolean sum type      133
Surface patch, Cartesian product      132
Surface patch, Coons-(1964)      91—101
Surface patch, Coons-(1967)      102—112
Surface patch, Ferguson-      87—91
Surface patch, general B-spline surface      334 335
Surface patch, loft      132
Surface patch, tensor product      132
Surface patch, triangular      228—231
Tangent plane      46
Tangent plane, equation      46
Tangent vector, unit-      21
Tangent, equation of a tangent line      21
Torsion      28
Torsion of a cubic curve      41
Transformation, bilinear      36
Transformation, homographic      36
Transformation, invariance of shape under coordinate-      18 19
Transformation, inverse      247—250 262—264 325—327
Transformation, inverse, curve      247—250 325—327
Transformation, inverse, surface      262—264
Transformation, parameter      35—39
Transformation, rational formula      36
Triangular area coordinate      229
Triangular surface patch      228—231
Triangular surface patch by degeneration      59 60 131 226—228
Truncated power function      138
Twist vector      91 98 104 112—116
Twist vector, method of determination      117 —122
Types of surfaces      132—133
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå