Авторизация
Поиск по указателям
Amit Y. — 2D object detection and recognition
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: 2D object detection and recognition
Автор: Amit Y.
Аннотация: Two important subproblems of computer vision are the detection and recognition of 2D objects in gray-level images. This book discusses the construction and training of models, computational approaches to efficient implementation, and parallel implementations in biologically plausible neural network architectures. The approach is based on statistical modeling and estimation, with an emphasis on simplicity, transparency, and computational efficiency.
The book describes a range of deformable template models, from coarse sparse models involving discrete, fast computations to more finely detailed models based on continuum formulations, involving intensive optimization. Each model is defined in terms of a subset of points on a reference grid (the template), a set of admissible instantiations of these points (deformations), and a statistical model for the data given a particular instantiation of the object present in the image. A recurring theme is a coarse to fine approach to the solution of vision problems. The book provides detailed descriptions of the algorithms used as well as the code, and the software and data sets are available on the Web.
Yali Amit is Professor of Statistics and Computer Science at the University of Chicago.
Язык:
Рубрика: Computer science /Обработка изображений /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2002
Количество страниц: 306
Добавлена в каталог: 25.11.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Multiple classification trees, mean margin 210
Multiple classification trees, object recognition 192
Multiple classification trees, randomized 165 185 187 189 197 219 247
multiple objects 116
Mutual information 71—73 106
Network x 12 28
Network, abstract module 238 256
Network, abstract module, class subset 238
Network, architecture 235 255
Network, biological analogies 252
Network, bottom-up processing 254
Network, classification 12 29 248
Network, detection x 12 28 252
Network, detection layer 248—250
Network, gating 250 254 255
Network, Hebbian learning 241 see
Network, inhibitory units 241 250
Network, input, high level 240
Network, input, low level 240
Network, input, visual 236
Network, invariant detection 254
Network, layers 235
Network, learning 12 28 253 256
Network, learning, classifier 241
Network, learning, object model 238 240
Network, location selection 250 252
Network, location selection, bottom-up 251 252
Network, location selection, pop-out 252
Network, location selection, top-down 249 251
Network, module 238
Network, priming 248 250—252
Network, recognition x 250 252
Network, recognition, off center 250
Network, retinotopic layers 236 248
Network, top-down information flow 249 251 254 255
Network, training 239 244
Network, translation 251 252
Network, translation layer 250
Neural dynamics 236
Neural system 235 236
Neuron, afferent connections 234
Neuron, afferent units 240
Neuron, binary 234
Neuron, local field 234 244
Neuron, output 234
Neuron, post-synaptic 237—239 244 257
Neuron, pre-synaptic 234 236—239 257
Neuron, threshold 234 235
NIST database 201 228 244
NIST database, misclassified digits 202
NIST database, pre-processing 201
Non-linear deformations 19 158
Normal equations 98
Object boundary 31 81
Object cluster 27 215 216 228 230 251
Object clustering 228
Object clustering, sequential 229
Object clustering, tree based 230
object detection ix 3 11 18 215 219
Object detection and recognition 7 27 215 219 220 221 229
Object detection as classification 25
Object detection, Bayesian approach 13
Object detection, deformable contour 178 see
Object detection, deformable curve 178 see
Object detection, deformable image 178 see
Object detection, model points 14
Object detection, non-rigid 2d 3 7 8
Object detection, rigid 3d 5 7 178
Object detection, rigid 3d, 3d models 178
Object detection, rigid 3d, sparse model 171 172
Object detection, rigid 3d, view based 230
Object detection, rigid 3d, view based models 8 171 178
Object detection, sparse model 178 see
Object model 2 241
Object model, admissible instantiation 15 18
Object model, coarse to fine 180
Object model, complexity 14
Object model, computation 17 18
Object model, cost function 17
Object model, data model 16
Object model, efficient computation 17
Object model, image transforms 16 18
Object model, instantiation 14—17
Object model, learning 241
Object model, likelihood 16—18
Object model, model points 13 14 18
Object model, one dimensional 31 81 88 107 180
Object model, parameter estimation 18
Object model, posterior 16 17
Object model, prior 15 17 18
Object model, sparse 109
Object model, template 3 13 15 18 179
Object model, two dimensional 88 107 180
Object pose 96
Object recognition ix x 8 11 25 181 215 219
Object recognition, deformable models 8
Object recognition, local features 193 194
Object recognition, multiple classification trees 192
Occam’s razor 18
Occlusion 17 23 113 151 159
Olivetti data set 163
Optical flow 100
or-ing 10 12 113 121 193 196 256
Parameter estimation, deformable contour 48
Parameter estimation, deformable curve 61
Parameter estimation, deformable image 96
Parameter estimation, sparse model 119 122
PARTS 214 232 253
Pattern recognition 212
Peeling 141 142
Perceptions 247
Perceptions, multiple randomized 247 256
Perceptions, multiple randomized, voting 247
Photometric invariance 4 10 16 20 58 93 94 105 113 118 120 184 193
Pose space search 6
Pose space search, coarse to fine 6
Positron emission tomography 101
Posterior, deformable contour 35 48
Posterior, deformable curve 62
Posterior, deformable image 87 95
Posterior, sparse model 114—116
pq probabilities 243
Predictors 185—188 193 196
Predictors, random subset 186 189
Prefrontal cortex 254
Priming 254
Principal components 35 54 106
Prior, deformable contour 32
Prior, deformable curve 57 62
Prior, deformable image 87
Prior, sparse model 114 139
Prototype image 14 17 21 82—84 93 111 133 216
qr 98
Quasi-Newton 92 100
Recurrent connections 235
Reference grid 13 57 96 111 113 160—162 173 238
Reference points 123 125
Region growing 53
Region of interest 215 221
Relational arrangements 26 184 197—208
Relational arrangements, as labeled graph 198
Relational arrangements, as query 199
Relational arrangements, instances 198 200
Relational arrangements, minimal extension 199
Relational arrangements, partial ordering 197 198
Relational arrangements, pending 199 200
Ridges 58 93
Road tracking 78
Rotation invariance 133 139 213
Saccade 250
Scale invariance 62 139 144 196 201
Scene 13
Scene analysis x 7 10 27 215 228
Scene interpretations 229
Serial computation 233
SHAPE 2 45 48 53 54 81
Shape classification 184
Smoothness penalty 87
Sparse model 4 7 21 23 24 111—113 179 215—217 224 228 229 248
Sparse model, admissible instantiation 117 135 151
Sparse model, as initialization 163
Sparse model, candidate centers 117 151 154 156 160 249
Sparse model, candidate centers, density 159
Sparse model, coarse to fine 145 151 153
Sparse model, computation time 148 153 160 179
Sparse model, counting detector 23 28 153 155 159 163 172 184 248
Sparse model, counting detector, step I 23 154 157 159 161 164 169 248
Sparse model, counting detector, step II 23 157 159 160 163 164 166 169
Sparse model, data model 114
Sparse model, detection 152 163 251
Sparse model, dynamic programming 6 23 142—145 148
Sparse model, false negative probability 135
Sparse model, false positive density 128 135—137 159
Sparse model, false positives 152 157
Sparse model, final classifier 161 165 169
Sparse model, image transform 114
Sparse model, instantiation 112 114 116 128 135 145 147 157 158 160 200
Sparse model, instantiation, clustering 158
Sparse model, landmarks 109 119 122
Sparse model, landmarks, user defined 109
Sparse model, likelihood 114 115
Sparse model, local features 113 117 140 151 157 220
Sparse model, local features, consistent arrangement 111—113 151 152 184
Sparse model, local features, on object probabilities 114 128 129 131—134 153
Sparse model, multiple objects 116
Sparse model, parameter estimation 119 122
Sparse model, pose detection 147 156 168 215 217
Sparse model, posterior 114—117 135
Sparse model, prior 114 139
Sparse model, prior, decomposable 23 140
Sparse model, template 113 119
Sparse model, threshold 117 126 128
Sparse model, training 119 122 157 224 240
Sparse model, training, edge arrangements 124
Splines 35
Statistical model 40 48 53 54 104
Statistical modeling 18
Support vector machine 185
Synapse 234
Synapse, depression 238 242
Synapse, efficacy 234—238 240 242 244 248
Synapse, internal state 237—239 241 244
Synapse, potentiation 238 241 244 253
Synaptic connections 235
Synaptic connections, directed 235
Synaptic modification 237
Template, deformable contour 32 81
Template, deformable curve 57 81
Template, deformable image 82
Template, sparse model 119
Test error rate 187
Thin plate splines 160
Tracking in time 54
Training error rate 187
Translation invariance 196 201
Ultrasound 46
Unsupervised learning 188
Unsupervised tree 188
Unsupervised tree, class distribution estimates 188
User initialization 3 4 57 109 149
USPS database 202 228
Ventricles 45
Visual scene 233
Visual system 7 8 233 234 250 252 253
Visual system, complex cells 253
Visual system, cortical column 253
Visual system, infero-temporal cortex 254
Visual system, layers 253 254
Visual system, object detection 234
Visual system, object recognition 234
Visual system, orientation selectivity 253
Visual system, receptive field 253
Wavelet basis 33 35 42 45 86 87 100
Wavelet basis, Daubechies 33
Wavelet basis, discrete transform 34 42 43 90
Wavelet basis, packets 35 87 106
Wavelet basis, pyramid 33 86
Wavelet basis, resolution 34 35 86
Wavelet basis, two dimensional 86
Wavelet basis, two dimensional, discrete transform 90
Weighted training sample 191
Реклама