|
 |
Àâòîðèçàöèÿ |
|
 |
Ïîèñê ïî óêàçàòåëÿì |
|
 |
|
 |
|
 |
 |
|
 |
|
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) |
|
 |
Ïðåäìåòíûé óêàçàòåëü |
Natural correspondence between binary trees and forests 333—334 345
Natural logarithm 23
Naur, Peter xiii 18
nested parentheses 309
Nested sets 309 314
Nesting store 236
Network 258 see
Neville, Eric Harold 585
Newell, Allen 226 456—457 459
Newton, identities 494
Newton, Sir Isaac 22 56
Nicomachus of Gerasa 19
Nil link see “Null link”
NOAH 308
Node 229
Node variable 232—233
Node, address of 229
Node, diagram of 230
Node, link to 229
Node, notations for fields 231—233 457—158
Node, sine of 240 254 296 435 452
Node, variable-size 435—455
NOP (no operation) 132
Normal distribution 102 103
Notations, index to 607—611
Notes on the exercises xvii—xix
Null link 230—231
Null link, in tree 315—316 319—320 329
NUM (convert to numeric) 134
Number system, binomial 72
Number system, decimal 21
Number system, Fibonacci 85
Number system, mixed-radix 297
Number system, phi 85
Number theory, elementary 38—44
Number, definitions 21
O'Beirae, Thomas Hay 155
o-notation 104—108
Oettinger, Anthony G 459
Office of Naval Research xii 226
Okada, Satio 377
One-plus-one address computer 456
One-way equalities 105—107
One-way linkage see “Straight linkage” “Circular
Onodera, Rikio 377
Open subroutine see “Macro instruction”
Operation code field, of MIX instruction 123
Operation code field, of MIXALIine 142 148 151
Optimal search procedure 402
Order of succession to throne 335
Ordered tree 306 373 388—389 see
Ordering, lexicographic 20 296—297 303 322
Ordering, linear 20 259 267
Ordering, linear, of trees 331 332 345
Ordering, partial 258—262 266—267 314 345
Ordering, well 20—21 332
Ore, Oystein 406
Oresme, Nicole 22
Oriented binary trse 396
Oriented cycle in directed graph 371
Oriented path in directed graph 371 376
Oriented trees 306 353—355 359 372—379 386 389
Oriented trees, canonical representation 390
Oriented trees, enumeration 386 389—397
Oriented trees, representation of 353—355
Oriented trees, root changed in 376
ORIG (origin) 142 148 151
Orthogonal lists 295—304
Otter, Richard Robert 388 395
OUT (output) 132—133 222
Out-degree of vertex 371
Output 5 215—225
Output, buffering 215—225
Output, operators of MIX 132—134
Output-restricted deque 235—239 266 271
Overflow 241—248 253—254 265—266 274 451
Overflow toggle of MIX 122 127 129 130 138 205 210 224
Packed data 124 153
Paging 451
Pall, Gordon 518
Parallelism 293 295 see
Parameters of subroutines 183 185
Parker, William Wayne xiii
Partial field designations in MIX 122—123 203
Partial fractions 62 71 82
Partial ordering 258—262 266—267 314 345
Partitions 0f an integer 12 32 92 93
Partitions of a set 73 481
Pascal, Blaise 17 52
Pascal, triangle 52 68—69 72 84 see
Pass, in a program 194—196
Path, in a graph or directed graph 362 372
Path, in a graph or directed graph, oriented 371
Path, in a graph or directed graph, random 380—381
Path, in a graph or directed graph, simple 362 369 371 370
Pawlak, Zdzislaw 459
PDP-4 120
Pedigree 307—308
Peripheral device 132
Perlis, Alan J 319 459
Permanent of a square matrix 50
permutations 44—45 49 96—97 160—164 169—170 172—181 238—239 320 371
Permutations, inverse of 172—175 180
Permutations, multiplication of 161—164 169—170 371
Permutations, notations for 160—161
PERT network 258—259
Peters, Johann f (= Jean) Theodor 615
Peterson, William Wesley xiii
Phi 79 see
Phi, number system 85
Phidias 79
Philco S2000 120
Pile 236
Pilot ACE computer 226
Pisano, Leonardo 78
Pivot step 301—302 304
PL/I 433 552
Planar tree see “Ordered tree”
playing cards 19 68 229—233 377
plex 457
POINTER see “Link”
Poisson, Simeon Denis, distribution 103 519
Polish notation see “Prefix notation“ “Postfix
Polonsky, Ivan Paul 460
Polya, Gyorgy (= George) 17 395 406 494
Polynomials 55 65 105
Polynomials, addition of 273—276 355—359 361
Polynomials, Bernoulli 42 109—112
Polynomials, Chebyshev 493
Polynomials, differences of 64
Polynomials, multiplication of 274 276—277
Polynomials, representation of 273 277 356—359
Pool of available nodes see “Available space list”
Pooled buffers 224
Pop up a stack 237—238 240—241 243 255—256 265—266 271 276 278—279 323 415—416
Postfix notation 336 351 362
Postorder for binary tree 316—320 328—330
Postorder for tree 334—336 338 345 350—351
Postorder sequential representation of trees 350—351 362
Power of number 21—22
Power of number, factorial 70 609
Power seriee see “Generating function”
Power seriee, convergence of 86
Power seriee, manipulation of 115
Prefix notation 336 359 587—588
Preorder for binary tree 316—317 326—331
Preorder for tree 334—336 348—349 359 459
Preorder sequential representation of trees 348—349
Preorder sequential representation with degrees 359 459
Prim, Robert Clay 370
| Prime numbers 18 39 41 43—44 46—47 68 143—145 153
Prime numbers, algorithm to compute 143—145 153
Prime numbers, factorization into 41 46—47 68
Prinn, D. G. 226
Printer 132—133
probability distribution 96—104 178
Probability distribution, average ("mean") value of 96 98—99 101
Probability distribution, generating function for 98—101 103—104
Probability distribution, variance of 96 98—99 101
Procedure see “Subroutine”
Procedure for reading this set of books xiv-xvi
PROGRAM 5
Programs, hints for construction of 187—189 293
Progression, arithmetic, sum of 11 13 31 55
Progression, geometric, sum of 31 87
Proof of algorithms 14—20 318—319 420
Proper divisor see “Divisor”
Propositional calculus 346
Prufer, Heinz 406
Pseudo-operator 142
Psi function 94 490 616
Purdom, Paul Walton, Jr xiii
Push down list 236 see
Push down onto a stack 237—238 240—241 243—244 254—256 271 276 279 323 415—416
q-binomial theorem 72
Quadratic reciprocity law 44
Qualification of names 423—434
Quasi—parallel processing 293 see
QUEUE 235—239 240—241 248—249 261—263 271 458
Queue, deletion from front 240—241 257—258 262—263 271
Queue, insertion at rear 240—241 262—263
Queue, linked allocation 257 270—271
Queue, sequential allocation 240—241 248—249
Quick, Jonathan Horatio 498
Ramanuian Aivaiigar, Srlnivasa 12 117
Ramus, Christian 70
Randell, Brian 198
Random path 380—381
Raney, George N 392 304 588
Raphael, Bertram 459
Rational number 21 157
RCA 601 120
Reading 211
Real number 21
Real Time 422 442
Reallocate sequentially stored tables 244—246
Rear of queue 237—238
Recipe 6
Reciprocity formulas 43—44
Recomp II 120
Record 132—133 229 see
Records, blocking of 214 222
rectangular arrays 295—304
Recursive definition 305 309 312 315—317 334
Recursive List 313
Recursive use of subroutine 187
Ref see “Link”
Reference 229 see
Reference counter technique 412—413 400
Reflexive relation 258 353
Registers, of MIX 122
Registers, saving and restoring contents of 184 194 224—225
Regular directed graph 378
Relation, antisymmetric 258
Relation, asymmetric 258
Relation, equivalence 353
Relation, irreflexive 258
Relation, reflexive 258 353
Relation, symmetric 353
Relation, transitive 105 258 353 see
Relatively prime integers 38—41
RELEASE a buffer 215 218 224
Remove from structure see “Deletion”
Renyi, Alfred 590
Repacking 243—246
Replacement operation 3
Replicattvc function 42
Representation (inside a computer), methods for choosing 234—235 423
Representation (inside a computer), of algebraic formulas 335—336 458
Representation (inside a computer), of arrays 154 296—300
Representation (inside a computer), of binary trees 315—316 319—322 325 332 401
Representation (inside a computer), of deques 248 27b
Representation (inside a computer), of directed graphs 380
Representation (inside a computer), of forests 333 347—362
Representation (inside a computer), of Lists 408—411 417 459—400
Representation (inside a computer), of oriented trees 353 376
Representation (inside a computer), of polynomials 273 277 356—359
Representation (inside a computer), of queues 240—241 256 270 278 286
Representation (inside a computer), of stacks 240—241 251 270 272 278
Representation (inside a computer), of trees 333—334 347—362 459
Reservation of free storage 253—254 263 266 275 289 436—438 414 449—450 452—454
Reversion storage 236
Riemann, Georg Friedrich Bernhard 74
Right subtree in a binary tree 309
Right-threaded tree structure 325 331 336 380
Ring structure 355
Riordan, John 397 406 492 532 590
RLINK, in binary tree 315 319—325 328—332
RLINK, in doubly linked list 278—270 285—289 315 319—325
RLINK, in List 408 410—411
RLINK, in tree 337 347—349 352 355 380 see
Robeon, J. M. 605
Robertson, James C. xiii
Rodrigues, Olinde 405
ROLL 236
Root of number 21 25
Root of tree 305—309 314 372—373 381 383
Root of tree, change of 376
Rooted directed graph 372 377
Rooted tree 372 see
Ross, Douglas Taylor xiii 451 457
Rothe, Heinrich August 62
Rounding 40 82 156
Row major order 296
RTAG 319—320 331 337 349 350
Running time see Execution time
Russell, Lawford John 198
Saddle point 155
Salton, Gerard Anton 350 458
SAME AREA 572
Sammet, Jean Elaine 340 401
Scaled decimal arithmetic 150—157
Scherk, Heinrich Ferdinand 488
Schiitzenberger, Marcel Paul xiii
Schlatter William Joseph 158
Schlatter, Charles Fordemwalt 458
Schorr — Kon, Jacques J 9
Schorr, Herbert 417 420
Schorre, Dewey Val xiii
Schroder, Ernst 587
Schwartz, Eugene Sidney 404
Schwarz, Hermann Amandus, inequality see “Lagrange's identity”
Schwenk, Allen John 493
Schweppe, Earl Justin xiii 458
SCOPE link 349 434
SCROLL 236
SDS 920 120
Segner, Johann Andreas von 405 531
Seiden, Esther 518
Selfridge, John I 77
Semi-invariants of a probability distribution 101—103
Sequential (consecutive) allocation of tables 240
Sequential (consecutive) allocation of tables, array 154 295—298
Sequential (consecutive) allocation of tables, contrasted to linked allocation 251—253 433
Sequential (consecutive) allocation of tables, linear list 240—251 261—263 323 414—416
Sequential (consecutive) allocation of tables, tree structures 347—350 359—362 401 434
Sets, partition of 73 481
Shaw, Christopher Joseph xiii
Shaw, John Clifford 456—157
shelf 230
|
|
 |
Ðåêëàìà |
 |
|
|