Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms)
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The art of computer programming (Vol. 1. Fundamental algorithms)

Àâòîð: Knuth D.E.

Àííîòàöèÿ:

This first volume in the series begins with basic programming concepts and techniques, then focuses more particularly on information structures-the representation of information inside a computer, the structural relationships between data elements and how to deal with them efficiently. Elementary applications are given to simulation, numerical methods, symbolic computing, software and system design. Dozens of simple and important algorithms and techniques have been added to those of the previous edition. The section on mathematical preliminaries has been extensively revised to match present trends in research.


ßçûê: en

Ðóáðèêà: Computer science/Àëãîðèòìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1968

Êîëè÷åñòâî ñòðàíèö: 761

Äîáàâëåíà â êàòàëîã: 18.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
INCX (increase X)      129 206
Indentation      309
INDEX      3—1 295—298 310 313 315
Index register      122—123 153 263
Index register, modification of MIX instructions      123 248
Indirect addressing      248—249 303
Induction, mathematical      11—21 32
Induction, mathematical, generalised      20—21
Infinite trees      314—315 381—385
Infinity lemma      381—385
Information structure      see “Data structure”
Ingerman, Peter Zilahy      xii
Initial vertex of arc      371
Input      5 211—225
Input, anticipated      212
Input, buffering      212—225
Input, operators of MIX      132—134 211—212
Input-restricted deque      235—239 415
Insertion of node, into availahle space list      see “Liberation”
Insertion of node, into deque      248 266 271 294
Insertion of node, into doubly linked list      279 288 294 442 444—445
Insertion of node, into linear list      235
Insertion of node, into linked list      231—232 252 274 279 288 294 301—302 357—358 442 444—445
Insertion of node, into queue      237—238 240—241 257 262 271
Insertion of node, into tree      325 331 357—358
Insertion of node, into two-dimensional list      301—302
Insertion of node, onto stack      237—238 240—241 243—244 254—256 265—266 271 276 279 323 415—416
Instruction, maehine language, in MIX      123—137
Instruction, maehine language, symbolic form      123—124 141—153
INT (interrupt)      225
INTEGER      21
Integration      89
Integration, related to summation      108—112 116
Interchange of valnce      3 179
Interchanging the order of summation      28—30 33 41
Interest, compound      23
Internal path length      399—400 405
Interpreter (interpretive routine)      197—208 226 338
Interrupt      224—225
Inverse (modulo m)      40
Inverse of matrix      35—37 72 304
Inverse of permutation      172—175 180
Inversion problem      63
Invert a linked list      2GG
IOC (input-output control)      133
IPL      22C
Irons, Edgar Towar      xii
Irreflexive relation      258
Isolated vertex      374
Iverson, Kenneth Eugene      37 117 458 459
J-register of MIX      122 130 139 182—183 185 208—210
J1NP (jump 1 nonpositive)      131 206
J1NZ (junip 1 nonzero)      131 206
J1P (jump 1 positive)      131 206
J1Z (jump 1 zero)      131 206
Jaequard, Joseph Marie, loom      225
JAN (jump A negative)      130 206
JANN (jump A nonnegative)      130 200
JANP (jump A nonpositive)      130 200
JANZ (jump A nonzero)      130 206
JAP (jump A positive)      130 206
Jarden, Dov      85
JAZ (jump A zero)      130 206
JBUS (jump A busy)      133 208 212 222
JCIV (jump on overflow)      130 138 205
JE (jump on equal)      130 205—206
Jenkins, D. P.      459
JG (jump on greater)      130 205—200
JGE (jump on greater-or-equal)      130 205—206
JIN (jump I negative)      131 206
JINN (jump 1 nonnegative)      131 206
JL (jump on less)      130 205—200
JLE (jump on less-or-equal)      130 205—200
JMP (jump)      130 183 205
JNE (jump on unequal)      130 205—206
JNQV (jump on no overflow)      130 138 205
Jodeit, Jane G.      461
Johnson, Lyle Robert      458 459
Joke      53 196
Jordan, Camille      405
Jordan, KAroly ( = Charles)      58
Jordan, Wilhelm, reduction algorithm for matrix inversion      304
Josephus' problem      158—159
JRED (jump ready)      133 218—218
JSJ (jump, save J)      130 185 205
Jump operators of MIX      130
JXN (jump X negative)      131 206
JXNN (jump X nonnegative)      131 206
JXNP (jump X nonpositive)      131 206
JXNZ (jump X nonzero)      131 206
JXP (jump X positive)      131 206
JXZ (jump X zero)      131 206
Kahn, Arthur B      265
Kahrimanian, Harry Gsorge      458
Kaucky, Josef      62
Kepler, Johann      79
Kilmer, Joyce      228
Kirchhoff, Gustav Robert      405
Kirchhoff, law of conservation of flow      95 167—168 265 276 323 364—370 374 378—380
Knopp, Konrad      47 75 110
Knotfed List      458
Knuth, Donald Ervin      ii xiii 198 456 578 587
Knuth, Ervin Henry      xii
Knuth, Jill Carter      xii
Kolmogorov, Andrei Nikolaevich      103
Konig, Denes      381 382 385 405
Koowlton, Kenneth C      460
Kozelka, Robert M      539
Kramp, Christian      48
Kronecker, Leopold, delta nolation      60
Kruskal, Joseph Bernard      385
Kummer, Ernst Eduard      68
L'Hospital, Guillaume Francois Antoine de, marquis de Sainte — Mesme, rule of      102
La Loubere, Simon de      158
Labeled trees, enumeration of      389—305 397—398
Lagrange, identity      34
Lagrange, inversion formula      392 588
Lagrange, Joseph Ijouih, comfe      27
Lame, Gabriel      79 405
Laplace, Pierre Simon, marquis de      80
Laplace, transform      86 93
Large programs, writing      187—189
Last-in-first-out      236 452 see
Last-in-first-out, almost      447 454
Lattice, free      346—347
Lawson, Harold W, Jr      432
LD1 (load 1)      125 135 204—205
LD1N (load 1 negative)      125 135 204—205
LDA (load A)      124—125 204—205
LDAN (load A negative)      125 135 204—205
LDXN (load X negative)      125 135 204—205
Left subtree in a binary tree      309
Legendre, Adrien Marie      48 40
Legendre, symbol      43
Leibnitz (= Leibniz), Gottfried Wilhelm, freiherr von      2 49
Leonardo of Pisa      78
Letter frequencies in English      155
Level of node in tree      305 314
Level order      350
LeVeqiie, William Jtidson      465
Levy, Paul      103
Lexicographic order      20 296—297 303 332
Liberation nf reserved storage      253 275 —119—120 438—442 444—445 449—450 452—455
LIFO      236 158 see
Lilius, Alnysinn      155
Lineal churl      307—308
Linear lists      228 234—304
Linear ordering      20 250 207
Linear ordering, embed parlial ordering into      259 see
Linear ordering, of trees      331 332 345
Linear recurrence      87
Link      229 231
Link variable      231—233
Link, diagram ot      230—231
Link, field, purpose of      231 431 4f
Link, manipulation, avoiding errors in      250—257
Link, null      230
Linkage, circular      270—277 300 355 409—410 458
Linkage, coroutine      190 196 220 288—289
Linkage, double      278 286 355 410
Linkage, orthogonal      286 298—300
Linkage, straight      230 251 256 410 416
Linkage, subroutine      182—183 189
Linkage, two way      278 286 355 410
Linked allocation of tables      230—231 251—253
Linked allocation of tables, array      286 299—309
Linked allocation of tables, contrasted to sequential allocation      251—253 433
Linked allocation of tables, linear list      230—231 251—258 261—203 270 276—277 278—279 330 416 433
Linked allocation of tables, tree structures      315—310 319—322 325 351—359
Linked-memory philosophy      251—253 435
Linking automaton      462—463
Lisp      229 459 603
List (capital-List) structures      312—313 315
List (capital-List) structures, copying      421
List (capital-List) structures, diagrams of      312—313 315 407
List (capital-List) structures, distinguished from lists      229 409 411
List (capital-List) structures, equivalence between      421—422
List (capital-List) structures, notations for      312—313 315 407
List (capital-List) structures, representation of      408—411 417 459—460
List head      272 278 286—287 299—309 322 332 336 408—410 443
List processing systems      229 411 459
List, circular      270—277 409—410 458
List, doubly linked      278—279 285—288 294—295 409-411 441—442 443—445 453 458
List, linear      228 234—30—1
List, of available space      see “Available space list”
Listing, Inhann Benedict      405
Literal constants in MIXAL      146 151
LLINK, in binary tree      315 319—325 328—332
LLINK, in doubly linked list      278—279 285—289
LLINK, in List      410—111
LLINK, in tree      337 347—349 352 355 380
Lloyd, Stuart Phinney      180 181
Loading operators of MIX      124—125 135 204—205
Loading routine      139—140 225 208
LOC      231—232
Local symbols in MIXAL      147 149 153
Locally defined function in tree      351 302
Location counter in MIXAL      150—151
Location field of MIXAL line      141—142 148
Logarithm      22—26
Logarithm, binary      22 25
Logarithm, natural      23 25 26
Logarithm, power series      89—90
Logical formulas      346
loop detection      268
Lovelace, Ada Augusta, countees of      1
LSON      352 359
LTAG      319—320 332 348—349 352
Lucas, ftdoiiard      68 79 80 270
Lukasiewicz, Jan      336
Lynch, William Charles      xii 581
MacGinitie, Gordon Frank      603
Machine language      120
Machine language, symbolic      141 see
MacMahon, Major Percy Alexander      480
Madnick, Stuart E      460
Magic square      158
Magnetic tape      132—134 462
Mark I calculator      225
Marking algorithms, from some given nodes      268—269 413—122
Markov, Andrei Andreevich (the elder)      380
Markov, Andrei Andreevich (the younger)      9
Markov, process      250 (exercise 13) 380—381
Markowitz, Harry Max      460
Mathematical induction      11—21 32
Mathematical induction, generalized      20—21
Matrix      228 295—296
Matrix, Cauchy      36—37
Matrix, combinatorial      36—37 584
Matrix, determinant of      35—37
Matrix, Dr Irving Joshua      33 34
Matrix, Hilbert      37
Matrix, incidence      267
Matrix, inverse of      35—37 304
Matrix, multiplication      304
Matrix, representation of      154 295—304
Matrix, sparse      299—304
Matrix, transpose of      180
Matrix, triangular      297—298 303
Matrix, Vandermonde      36—37
Maurolico, Francesco      17
Maximum, algorithm to find      95 141 182
McCall'B      v
McCarthy, John      459 460
McCracken, Daniel Delbert      xii—xiii
McEliece, Robert James      476 481
McNeley, John Louis      xiii
Mean (average) of a probability distribution      96 98—99 101
Meek, H V      227
Meggitt, John E      470
Memory      122 195 234
Memory map      435—436 448—449
Memory, cell of      123
Memory, Types of      195 234 461—462
Memory, update      295
Meraer, Jack Newton Foray the      xiii 226
Merging      402
Metcalfe, Howard Hurtig      xiii
Military game      270
Minimum path length      400—405
Minimum wira length      370—371
Minsky, Marvin Lee      422
Mitchell, William Charles      520
MIX computer      xi 120—140
MIX computer, assembly language for      141—153
MIX computer, extensions to      139 225—226 248—249 454
MIX computer, instructions, form of      123
MIX computer, instructions, summary      136—137
MIX computer, simulator of      198—208
MIXAL      141—153
Mixed-radix number system      297
Mock, Owen Russell      227
MOD      38
MODULO      38
Moments of probability distribution      103
Monitor routine      208 we
Monte Carlo method      446
Moon, John Wesley      406
Mordell, Louis Joel      42
Mother      307 see
MotKkin, Theodur Samuel      531
Mouse algorithm      see “Traversal”
Move      131 189 207
MOVE CORRESPONDING in COBOL      425 429—431 434
Moyse, Alphonse, Jr.      377
MUG      627
Mul (Multiply)      127—128 204
Multilinked structures      228 285—286 356—359 423—434 457
Multinomial coefficient      64 394
Multinomial theorem      64
Multipass algorithm      194—196 197—198
Multiple entrances to subroutines      185—186
Multiple exits from subroutines      186
Multiple precision arithmetic      198
Multiplication of permutations      161—164 169—170 371
Multiplication of polynomial      274 276—277
Multiplicative function      41
Multiway decisions      153
Napier, John      23
National Science Foundation      xii
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå