Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Fukunaga K. — Introduction to Statistical Pattern Recognition
Fukunaga K. — Introduction to Statistical Pattern Recognition



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Introduction to Statistical Pattern Recognition

Автор: Fukunaga K.

Аннотация:

This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.


Язык: en

Рубрика: Computer science/Обработка изображений/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: second edition

Год издания: 1991

Количество страниц: 591

Добавлена в каталог: 17.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
K nearest neighbor (NN), asymptotic conditional risk and error, NN      305
K nearest neighbor (NN), branch and bound      see Branch and bound
K nearest neighbor (NN), condensed NN      360
K nearest neighbor (NN), edited kNN      358
K nearest neighbor (NN), finite sample analysis      313
K nearest neighbor (NN), finite sample analysis, bias, 2NN      321
K nearest neighbor (NN), finite sample analysis, bias, multiclass      322
K nearest neighbor (NN), finite sample analysis, bias, NN      313
K nearest neighbor (NN), Karhunen — Loeve expansion      see Expansion
Kiefer — Wolfowitz method      380
Kolmogorov — Smirnov test      76 83
Lagrange multiplier      26 59
Large number of classes      284
Layered machine      171
Learning      368
Learning without teacher      394
Learning, machine      5
Leave-one-out method      220
Leave-one-out method for k nearest neighbor approach      see kNN
Leave-one-out method for Parzen approach      see Parzen
Likelihood ratio      52
Likelihood ratio for normal distribution      see Distribution normal
Likelihood ratio for Parzen approach      see Parzen
Likelihood ratio, characteristic function of      see Characteristic function
Likelihood ratio, density function of      see Density function
Likelihood ratio, for k nearest neighbor approach      see kNN
Likelihood ratio, Fourier transform of      see Fourier transform
Likelihood ratio, minus-log      52
Likelihood ratio, test (decision rule)      see Decision rule
Likelihood ratio, threshold of      52
Linear classifier by nonparametric scatter matrix      473
Linear classifier for minimum error      136
Linear classifier for minimum mean-square error      145 147
Linear classifier for multiclass      373
Linear classifier, Bayes      55 57 129
Linear classifier, effect of design samples      208
Linear classifier, error of      see Error
Linear classifier, Fisher      135
Linear classifier, iterative design      150
Linear classifier, successive adjustment      367
Linearly separable      153 371
Linearly separable, convergence for      see Convergence
Local, dimensionality      see Dimensionality intrinsic
Local, mean      535 542
Log transformation      see Transformation
Mapped space      see Feature space
Mapping, linear      399 448 465 470
Mapping, nonlinear      463 480
Matched filter      126
Matrix, autocorrelation      15
Matrix, autocorrelation, sample      see Sample
Matrix, block Toeplitz      162
Matrix, correlation      15
Matrix, covariance      13
Matrix, covariance, sample      see Sample
Matrix, derivatives      564
Matrix, derivatives of determinant      567
Matrix, derivatives of distance      568
Matrix, derivatives of inverse      564
Matrix, derivatives of trace      565
Matrix, determinant      38
Matrix, diagonal      27
Matrix, eigenvalue      27
Matrix, eigenvector      27
Matrix, inversion of      41
Matrix, inversion of, generalized      44
Matrix, inversion of, pseudo-      43
Matrix, near-singular      40
Matrix, positive definite      35
Matrix, rank      38
Matrix, sample      39 149 174 556
Matrix, singular      38
Matrix, Toeplitz      160
Matrix, trace      36
Mean      see Expected value
Mean, sample      see Sample
Merging      513
Metric      264 275 313
Metric, global      313
Metric, local      313
Minimax for feature extraction      see Feature extraction
Minimax, test      see Decision rule
Minimum point finding problem      see Stochastic approximation
Minus-log-likelihood ratio      see Likelihood ratio
Mixture, autocorrelation matrix      see Scatter matrix mixture
Mixture, density function      see Density function
Mixture, normalization      516 519
Mixture, scatter matrix of      see Scatter matrix
Model validity test      82
moment      18
Moment, central      20
Moment, estimate      18
Moment, sample      18
Monotonicity      492 526
Multi-sensor fusion      114
Multiclass      66 169 373
Multicluster      169
Multihypotheses test      see Hypothesis test
Multiple dichotomy      513
Nearest local-mean reclassification rule      542
Nearest mean reclassification rule      517
Nearest mean reclassification rule, convergence of      518
Nearest neighbor decision rule      see kNN
Newton method      376
Neyman — Pearson test      see Decision rule
Nonparametric clustering      see Clustering
Nonparametric data reduction      see Data reduction
Nonparametric density estimation, k nearest neighbor approach      see kNN
Nonparametric density estimation, Parzen approach      see Parzen
Nonparametric discriminant analysis      see Discriminant analysis
Nonparametric scatter matrix      see Scatter matrix
Normal decomposition      526
Normal decomposition, maximum likelihood estimation      527
Normal decomposition, method of moments      527
Normal decomposition, piecewise quadratic boundary      526
Normal distribution      see Distribution normal
Normality test      75 537
Normalization of eigenvalues      see Eigenvalues
Normalization, mixture      see Mixture
Notation      9
Operating characteristics      63
Orthogonal      27 287
Orthonormal      27 386 401
Orthonormal for binary inputs      see Binary input
Orthonormal of Fourier transform      see Fourier transform
Orthonormal transformation      see Transformation
Outlier      235
Pairwise error      see Error
Parametric clustering      see Clustering
Parametric data reduction      see Data reduction
Parametric estimation      184
Parzen, classification      301
Parzen, classification, likelihood ratio      301
Parzen, classification, reduced      553
Parzen, density estimation      255 574
Parzen, density estimation, bias      259
Parzen, density estimation, consistent      261
Parzen, density estimation, convolution expression      257
Parzen, density estimation, kernel      255
Parzen, density estimation, kernel, metric      264
Parzen, density estimation, kernel, metric, minimum IMSE      265
Parzen, density estimation, kernel, size      261
Parzen, density estimation, kernel, size, minimum IMSE      264
Parzen, density estimation, kernel, size, minimum MSE      263
Parzen, density estimation, moments      257
Parzen, density estimation, moments, approximation of      258
Parzen, density estimation, moments, for a normal kernel      259
Parzen, density estimation, moments, for a uniform kernel      260
Parzen, density estimation, unbias      261
Parzen, density estimation, variance      259
Parzen, error estimation, direct estimation of the Bayes error      344
Parzen, error estimation, kernel, L estimate of the kernel covariance      339
Parzen, error estimation, kernel, shape      336 342
Parzen, error estimation, kernel, size      322
Parzen, error estimation, leave-one-out method      301
Parzen, error estimation, lower bound of the Bayes error      301
Parzen, error estimation, resubstitution method      301
Parzen, error estimation, sample size      327
Parzen, error estimation, threshold      328
Parzen, error estimation, upper bound of the Bayes error      301
Perceptron      368
Perturbation of a quadratic classifier      see Quadratic classifier
Perturbation of eigenvalues      see Eigenvalues
Perturbation of eigenvectors      see Eigenvectors
Piecewise classifier, linear      170
Piecewise classifier, quadratic      169
Piecewise classifier, successive adjustment      373
Positive definiteness      see Matrix
Potential function      387
Power spectrum      421
Power transformation      see Transformation
Principal component      28
Principal component, analysis      417
Probability of error      see Error
Probability, a posteriori      12
Probability, a priori      12
Probability, class      12
Probability, coverage      see Coverage
Probability, reject      see Reject
Process, random      417
Process, stationary      see Stationary process
Process, whitening      28
Quadratic classifier, Bayes      54
Quadratic classifier, bootstrap error for      242
Quadratic classifier, design of      153
Quadratic classifier, error of      see Error
Quadratic classifier, error of the resubstitmion method      231
Quadratic classifier, orthogonal subspace to      480
Quadratic classifier, perturbation of      225
Quadratic classifier, sequential selection      480
Quadratic form (function)      16 54 125 154
Quadratic form (function), recursive computation of      498
Radar Data      47
Random process      see Process
Random variable      11
Random vector      see Vector
Rank of determinant      see Matrix
Ranking procedure      73
Reduced Parzen classifier      see Parzen
Reduced training sequence      see Sequence
Regression function      376
Reject      78
Reject, probability      78
Reject, region      78 171
Reject, threshold      78
Representative selection      549
Reproducing pair      see Density function
Resubstitution method      220
Resubstitution method for k nearest neighbor approach      see kNN
Resubstitution method for Parzen approach      see Parzen
Resubstitution method, error for a quadratic classifier      231
Robbins — Monro method      376
Root-finding problem      see Stochastic approximation
Row correlation coefficient      164
Sample, autocorrelation matrix      19
Sample, covariance matrix      21
Sample, design, bias due to      203 216
Sample, design, effect of      201
Sample, design, variance due to      213 218
Sample, estimate      17
Sample, generation      30
Sample, matrix      see Matrix
Sample, mean vector      19
Sample, moment      see Moment
Sample, test, bias due to      199 216
Sample, test, effect of      197
Sample, test, variance due to      200 218
Scatter matrix of mixture      446
Scatter matrix, between-class      446
Scatter matrix, between-class, generalized      463
Scatter matrix, between-class, nonparametric      467
Scatter matrix, within-class      446
Scatter matrix, within-class, nonparametric      477 542
Scatter measure      411
Schwarz inequality      309
Separability criterion      446
Sequence, flatter      389
Sequence, harmonic      375
Sequence, reduced training      371
Sequential (hypothesis) test      110
Sequential (hypothesis) test, Wald      114
Simple hypothesis test      see Hypothesis test
Single hypothesis test      see Hypothesis test
Singular value decomposition      557
Skeleton hypersurface      537
Small sample size problem      39
Solution tree      492 523
Spherical coordinate      484
Splitting      513
Standard data      45
Standard deviation      15
Stationary process      55 156 420
Stationary process, autocorrelation function      157 420
Stationary process, mean      157 420
Stochastic approximation      375
Stochastic approximation, convergence      see Convergence
Stochastic approximation, minimum point finding problem      380
Stochastic approximation, multidimensional extension      382
Stochastic approximation, root-finding problem      376
Successive adjustment of density function      see Successive Bayes estimation
Successive adjustment, linear classifier      see Linear classifier
Successive adjustment, piece wise classifier      see Piecewise classifier
Successive adjustment, potential function      385
Successive Bayes estimation      389
Successive Bayes estimation of covariance matrix      392 393
Successive Bayes estimation of expected vector      390 393
Successive Bayes estimation, supervised estimation      390
Successive Bayes estimation, unsupervised estimation      394
Surface area      see Hyperellipsoid
Taylor series      182 258 270 313
Test sample      see Sample
Toeplitz matrix      see Matrix
Trace      see Matrix
Transformation, linear      24 401 448 465 470
Transformation, log      108
Transformation, orthonormal      28 35 401 417
Transformation, power      76 104
Transformation, variable      47
Transformation, whitening      28 128
Truth table      290
Unbiased, asymptotic, k nearest neighbor density estimate      see kNN
Unbiased, asymptotic, Parzen density estimate      see Parzen
Unbiased, estimate      see Estimate
Unsupervised, classification      see Classification
Unsupervised, estimation      see Successive Bayes estimation
Valley-seeking technique      see Clustering
Variable transformation      see Transformation
Variance      14
Vector, basis      see Basis
Vector, conditional expected      13
Vector, desired output      see Desired output
Vector, expected      see Expected
Vector, feature      see Feature
Vector, penalty      150
Vector, random      11
Volume      see Hyperellipsoid
Volumetric k nearest neighbor      see kNN
Voting k nearest neighbor      see kNN
Wald sequential test      see Sequential (hypothesis) test
Walsh function      see Expansion
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте