Авторизация 
		         
		        
					
 
		          
		        
			          
		        
			        Поиск по указателям 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Friedman J., Hastie T., Tibshirani R. — The Elements of Statistical Learning 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме    Нашли опечатку? 
 
                                
                                    Название:   The Elements of Statistical LearningАвторы:   Friedman J., Hastie T., Tibshirani R.Аннотация:  During the past decade there has been an explosion in computation and information technology. With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics.Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Язык:  Рубрика:  Computer science /AI, knowledge /Статус предметного указателя:  Готов указатель с номерами страниц ed2k:   ed2k stats Год издания:  2001Количество страниц:  533Добавлена в каталог:  17.11.2005Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Предметный указатель 
                  
                
                    
                        Jones, M. 144 148 155 368 514 Jooste, P. 100 520 Jordaan, P. 100 520 Jordan, M. 296 516 517 K-means clustering 412 461—465 K-medoid clustering 468—472 K-nearest neighbor classifiers 415 Kabalin, J. 3 47 521 Karhunen — Loeve transformation (principal components) 62—63 66 485—491 Karush — Kuhn — Tucker conditions 110 374 Kaski, S. 485 503 517 Kaufman, L. 469 480 503 517 518 Kearns, M. 517 Kelly, G. 477 517 Kennard, R.W 60 75 516 Kent, J. 75 111 495 504 518 Kerkyachairan, G. 331 511 Kernel density classification 184 Kernel density estimation 182—189 Kernel function 183 Kernel methods 182—189 Kittler, J.V. 432 511 Knight, K. 255 521 Knot 117 283 Kohonen, T. 414 433 485 503 517 Kooperberg, G. 289 521 Kotze, J. 100 520 Kressel, Ulrich 517 Kriging 147 Krogh, A. 367 516 Kruskal — Shephard scaling 502 Kullback — Leibler distance 497 Lagrange multipliers 256 Lagus, K. 485 503 517 Laird, N.. 255 400 511 Laplacian distribution 72 Lasso 64—65 69—72 330-331 Lawson, G. 75 517 Le Gun, Y. 362 363 365 366 368 517 520 Learning 1 Learning rate 354 Learning Vector Quantization 414 Least squares 11 32 Leave-one-out cross-validation 215 Leblanc, M. 255 517 Lee, W. 343 520 Left singular vectors 487 LeNet 363 Li, K-G       432 512 Life, ultimate meaning of 534 Likelihood function 229 237 Lin, H. 293 518 Lin, Y. 382 406 522 Linear basis expansion 115—124 Linear combination splits 273 Linear discriminant function 84—94 Linear methods for classification 79—114 Linear methods for regression 41—78 Linear models and least squares 11 Linear regression of an indicator matrix 81 Linear separability 105 Linear smoother 129 Link function 258 Little, R. 293 518 Littman, M. 504 510 Lloyd, S.P 433 503 518 Loader, G. 183 190 518 Local likelihood 179 Local methods in high dimensions 22—27 Local minima 359 Local polynomial regression 171 Local regression 168 174 Localization in time and in frequency 149 Loess (local regression) 168 174 Log-odds ratio (logit) 96 Logistic (sigmoid) function 352 Logistic regression 95—104 261 Logit (log-odds ratio) 96 Loss function 18 21 193—195 308 Loss matrix 272 Lossless compression 467 Lossy compression 467 LVQ see "Learning Vector Quantization" Macnaughton Smith, P. 518 MacQueen, J. 433 503 518 Madigan, D. 222 255 518 Mahalanobis distance 392 Majority vote 249 299 Mannila, H. 442 443 503 509 MAP (maximum aposteriori) estimate 234 Mardia, K.V. 75 111 495 504 518 Margin 110 372 Market basket analysis 440 451 Markov chain Monte Carlo (MCMC) methods 243 MARS see "Multivariate adaptive regression splines" MART see "Multiple additive regression trees" Massart, D. 469 518 Maximum Likelihood Estimation 32 225 Maximum likelihood inference 229 McGulloch, G.E. 293 518 McGulloch, W.S. 367 518 McLachlan, Geoffrey J. 111 518 McNeal, J. 3 47 521 MDL see "Minimum description length" Mean squared error 24 247 Memory-based method 415 Metropolis — Hastings algorithm 245 MGMC see "Markov Chain Monte Carlo Methods" Michie, D. 89 390 422 518 Minimum description length (MDL) 208 Misclassification error 17 271 Missing data 240 293—294 Missing predictor values 293—294 Mixing proportions 189 Mixture discriminant analysis 399—405 Mixture modeling 188—189 236—240 399—405 Mixture of experts 290-292 Mixtures and the EM algorithm 236—240 Mockett, L.G. 518 Mode seekers 459 Model averaging and stacking 250 Model combination 251 Model complexity 194—195 Model selection 195—196 203—204 Monte Carlo method 217 447 Morgan, James N. 296 518 Mother wavelet 152 Mulier, F 39 211 510 Multi-dimensional splines 138 Multi-edit algorithm 432 Multi-layer perceptron 358 362 Multi-resolution analysis 152 Multidimensional scaling 502—503 Multinomial distribution 98 Multiple additive regression trees (MART) 322 Multiple minima 253 359 Multiple outcome shrinkage and selection 73 Multiple outputs 54 73 81—84 Multiple regression from simple univariate regression 50 Multivariate adaptive regression splines (MARS) 283—289 Multivariate nonparametric regression 395 Munro, S. 355 519 Murray, W. 75 519 Myles, J.P 429 519 Nadaraya — Watson estimate 166 Naive Bayes classifier 86 184—185 Natural cubic splines 120-121 Neal, R. 255 519 Nearest neighbor methods 415—436 Network diagram 351 Neural networks 347—370 Newton's method (Newton — Raphson procedure) 98—99 Nonparametric logistic regression 261—265 Normal (Gaussian) distribution 17 31 Normal equations 12 Nowlan, S. 296 516 Numerical optimization 319 353—354 Object dissimilarity 457—458 Oja, E. 496 497 498 504 516 Olshen, R 219 270 272 296 331 405 510 Online algorithm 355 Optimal scoring 395—397 401—402 Optimal separating hyperplanes 108—110 Optimism of the training error rate 200-202 Ordered categorical (ordinal) predictor 10 456 Orthogonal predictors 51 Overfitting 194 200-203 324 Paatero, A. 485 503 517 Pace, R. Kelley 335 519 Palmer, R.G. 367 516 Parametric bootstrap 228 Parker, David 367 519 Partial dependence plots 333—334 Partial least squares 66—68 Parzen window 182 Pasting 279 Patient rule induction method (PRIM) 279—282 451—452 Peeling 279 Penalization see "regularization" Penalized discriminant analysis 397—398 Penalized polynomial regression 147 Penalized regression 34 59—65 147 Penalty matrix 128 163 Perceptron 350-370 Piatt, J. 405 519 Picard, D. 331 511 Piecewise polynomials and splines 36 119 Pitts, W. 367 518 Plastria, F. 469 518 Poggio, T. 144 148 155 368 406 512 514 Pontil, M. 144 155 406 512 Posterior distribution 232 Posterior probability 206—207 232 Prediction accuracy 290 Prediction error 18 Predictive distribution 232 Prim see "patient rule induction method" Principal components 62—63 66—67 485—491 Principal components regression 66—67 Principal curves and surfaces 491—493 Principal points 491 Prior distribution 232—235 Projection pursuit 347—349 500 Projection pursuit regression 347—349 Prototype classifier 411—415 Prototype methods 411—415 Proximity matrices 455 Pruning 270 QR decomposition 53 Quadratic approximations and inference 102 Quadratic discriminant function 86 89 Quinlan, R 273 296 519 Radial basis function (RBF) network 350 Radial basis functions 186—187 240 351 Raftery, A.E. 222 255 518 Ramsay, J. 155 519 Rao score test 103 Rao, G. R. 406 519 Rayleigh quotient 94 Receiver operating characteristic (ROC) curve 277—278 Reduced-rank linear discriminant analysis 91 Redwine, E. 3 47 521 Regression 11—13 41—78 174—178 Regression spline 120 Regularization 34 144—149 Regularized discriminant analysis 90-91 Representer of evaluation 145 Reproducing kernel Hilbert space 144—149 Reproducing property 145 Responsibilities 238—240 Rice, J. 477 517 Ridge regression 59—64 Ripley, B.D. 39 108 111 113 270 359 367 368 406 420 432 433 519 risk factor 100 Rissanen, Jorma 222 519 Robbins, H. 355 519 Robust fitting 308—310 Roosen, G. 519 Rosenblatt's perceptron learning algorithm 107 Rosenblatt, F. 80 106 367 520 Rousseauw, J. 100 520 Rousseeuw, P. 469 480 503 517 Rubin, D. 255 293 400 511 514 518 Rug plot 265 Rumelhart, D. 367 520 Saarela, A. 485 503 517 Salojarvi, J 485 503 517 Sammon mapping 502 Scaling of the inputs 358 Schapire, R. 299 340 341 343 513 520 Schnitzler, G. 295 515 Schroeder, A. 514 Schwartz's criterion 206—207 Schwartz, G. 206 222 520 Score equations 98 229 Scott, D. 190 520 Seber, G.A.F 75 520 Sejnowski, T. 504 509 Self-consistency property 491—492 Self-organizing map (SOM) 480-484 Sensitivity of a test 277—278 Separating hyperplanes 108 371—373 Shao, J. 222 520 Shape averaging 434 Short, R.S. 429 520 Shrinkage methods 59—66 Shustek, L.J. 513 Shyu, M. 333 509 Sigmoid 352 Silverman, B. 155 157 190 295 296 514 515 519 520 Silvey, S.D. 254 520 Simard, P. 432 515 520 Similarity measure see "dissimilarity measure" Singer, Y. 343 520 Single index model 348 Singular value decomposition (SVD) 487—488 Singular values 487 Skin of the orange example 384—385 Slate, E.H. 293 518 Sliced inverse regression 432 Smith, A. 255 514 Smoother 115—134 165—173 Smoother matrix 129 Smoothing parameter 37 134—136 172—173 Smoothing spline 127—133 Soft clustering 463 Softmax function 351 SOM see "self-organizing map" Sonquist, John A. 296 518 Sparseness 149 Specificity of a test 277—278 Spector, P. 222 510 Spiegelhalter, D. 255 518 520 Spline egression 120 Spline interaction 382 Spline smoothing 127—133 Spline, additive 259—260 Spline, cubic 127—128 Spline, cubic smoothing 127—128 Spline, thin plate 140 
                            
                     
                  
			Реклама