Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Farrelle P.M. — Recursive Block Coding for Image Data Compression
Farrelle P.M. — Recursive Block Coding for Image Data Compression



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Recursive Block Coding for Image Data Compression

Àâòîð: Farrelle P.M.

Àííîòàöèÿ:

Develops a new image data compression technique, namely recursive block coding, that has its roots in non-causal models for 1d and 2d signals. The underlying theoretical basis provides a multitude of compression algorithms that encompass two source coding, transform coding, quad tree coding, hybrid coding and so on.


ßçûê: en

Ðóáðèêà: Computer science/Îáðàáîòêà èçîáðàæåíèé/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1990

Êîëè÷åñòâî ñòðàíèö: 297

Äîáàâëåíà â êàòàëîã: 16.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Minimum variance representation (MVR)      10—16 30
Miyahara, M.      5
Modeling      9—10
Monochrome images      96—97
MSE      see “Mean residual energy”
Nakagawa, M.      5
NCI model      31 32 252
Nightingale, Charles      208
Noise      “see Distortion”
Noncausal models      13—16 31—34
Normalized variance      86—93
Normalized variance adaptive coding      160—163
Normalized variance hybrid predictive/transform coding      141—142 144
Normalized variance image ensemble grouping      84—88 108—113
Normalized variance, 1d DCT and      266—267
Normalized variance, 1d RBC and      110—113 263—265
Normalized variance, 2d DCT and      123—124
Normalized variance, 2d RBC and      124—128
Normalized variance, adaptive RBC and      168
Normalized variance, boundary overshoot and      144—145
Normalized variance, image quality measure and      103
Orthogonality      10—11 74
OVERHEAD      155—156 219
Paez, M.D.      63
Parseval relation      84—85
Partial difference equations      254—256
Partial differential equations      5—6 31 252—254
PCM      see “Pulse code modulation”
Peppers image      see “Image ensemble”
Performance curve MSE design modification      188
Performance curve, adaptive DCT      163
Performance curve, adaptive RBC      173
Prediction error filter (PEF)      12
Prediction error, 2d minimum variance model      30
Prediction error, autoregressive model and      10
Prediction error, boundary overshoot and      144—145
Prediction error, boundary residual coefficients and      44—46
Prediction error, DPCM and      2—3
Prediction error, hybrid predictive/transform coding      139—140
Prediction error, noncausal model      14
Prediction error, slope overload and      143—144
Prediction error, two source decomposition      6
Prediction rate for quad tree segmentation      196—198 202—203 247
Prediction rate, varying block size and      220
Prediction rate, VQ and      235
Prediction variance reduction ratio      88—93
Predictive coding      2—3
Predictive coding for autoregressive model      10
Predictive coding for quad tree segmentation      194
Predictive coding, hybrid transform coding      137—146
Probability density function      57
Product code      227 234
Progressive transmission system      243
pth-order Markov sequence      12 16—19
Pulse code modulation (PCM)      1 227;
Quad tree segmentation      191—193
Quad tree segmentation algorithm      197
Quad tree segmentation allowable block size      197
Quad tree segmentation encoding      198—203
Quad tree segmentation image reconstruction      203—208
Quad tree segmentation prediction rate      202—203
Quad tree segmentation residual transform coding      211—217
Quad tree segmentation simulation results      219—224
Quad tree segmentation uniformity criterion      195
Quad tree segmentation, arbitrary regions and      247
Quad tree segmentation, MSE      195—196 223
Quad tree segmentation, overlapping blocks and      193
Quad tree segmentation, predictor for      194
Quad tree segmentation, progressive transmission system and      243
Quad tree segmentation, segmentation parameters      196—198
Quad tree segmentation, threshold and      217—218 224
Quad tree segmentation, VQ of residual      234—237
Quantizer      1
Quantizer adaptive coding      155 162
Quantizer non-adaptive zonal coding      70
Quantizer off-line scheme      84—88
Quantizer scalar vs. vector methods      226—227
Quantizer zero level      68—70 217 220—221 242 243
Quantizer zonal coding artifacts      146; see also “Vector quantization”
Quantizer, images for evaluation of      96—97
Quantizer, optimal choice of      53—58
Quantizer, pdf for      57
Ramamoorthy, P.A.      232
Ramamurthi, B.      233
Random variables      9—10
Rate distortion (RD) 1d RBC      72—76
Rate distortion (RD) 2d RBC      76—80
Rate distortion (RD) for adaptive DCT      163
Rate distortion (RD) for fast discrete transforms      211—213
Rate distortion (RD) Shannon function      66—67 242
Rate distortion (RD), adaptive coding and      187
Rate distortion (RD), bit allocation and      58—61 71—72
RATELIST      101—102
RBC      see “Recursive block coding”
Realization filter (RF)      11—12
Reconstruction      see also “Specific methods problems”
Reconstruction quad tree segmentation      203—208
Reconstruction zero level quantizer      68—70
Recursive Block coding (RBC) 1d algorithm      19—21
Recursive Block coding (RBC) 2d algorithm      35—37
Recursive Block coding (RBC) hybrid design      142—146
Recursive Block coding (RBC) normalized variance      110—113 263—265
Recursive Block coding (RBC) rate distortion analysis      72—84
Recursive Block coding (RBC) simplified 1d model      25—29
Recursive Block coding (RBC) subjective quality      114 121
Recursive Block coding (RBC), 1d coding results      108—124 111—123
Recursive Block coding (RBC), 2d coding results      123—137
Recursive Block coding (RBC), adaptive coding and      166—175 175—186
Recursive Block coding (RBC), advantages of      51—52
Recursive Block coding (RBC), alternative 2d algorithm      42 44
Recursive Block coding (RBC), block distortion and      80—84
Recursive Block coding (RBC), coding recommendations      242—243
Recursive Block coding (RBC), complexity vs. DCT      241
Recursive Block coding (RBC), interblock redundancy and      242
Recursive Block coding (RBC), quad tree segmentation for      192—193
Recursive Block coding (RBC), robustness of      151
Recursive Block coding (RBC), tile effect and      51—52
Recursive Block coding (RBC), variance reduction      88—93
Recursive Block coding (RBC), VQ applied to      234—235; see also “1d model” “2d
Reeve, H.C.      5
Reininger, R.C.      57
Residual components 2d RBC design      124—125
Residual components boundary breakthrough      83 111 125 215
Residual components boundary error weighting function      74—75
Residual components of 1st-order Markov process      28—29
Residual components rate distortion      72—80
Residual components transform rd functions      211—213
Residual components two source decomposition      6
Residual components, adaptive RBC and      166—175
Residual components, adaptive segmentation and      191—192
Residual components, boundary residual coefficients and      44—46
Residual components, Coon's patches and      46—48
Residual components, quad tree segmentation and      193 196 211—217
Residual components, uncorrelated      51
Residual components, varying block size and      211—217
Residual components, VQ of      234—237
Residual variance      75 125;
Robustness, of RBC      151
Sailboat image      see “Image ensemble”
Sakrison, D.J.      7
Satellite image data      2
Schreiber, W.F.      6
Schultheiss, P.M.      56 61
Segall, A.      59 62 63
Segmentation      see “Quad tree segmentation”
Separable covariance model      138
Shannon rate distortion function      60—61 66—67 71—72 187 242
Signal-to-noise ratio (SNR) 1d coding results      113 120 123
Signal-to-noise ratio (SNR) 2d coding results      135 137
Signal-to-noise ratio (SNR) adaptive coding      184
Signal-to-noise ratio (SNR) hybrid coding      153 154
Signal-to-noise ratio (SNR) quad tree coding      223
Signal-to-noise ratio (SNR) VQ      239
Signal-to-noise ratio (SNR), image quality and      103
Simulation facilities      97—102
Sinusoidal sequences      261; see also “Discrete sine transform”
Slant — Haar transform      211—212
Slant — Walsh transform      3
Slope overload      143—144
Smith, C.H.      57 71 156
Smoothness, adaptive coding and      183
Smoothness, image variance and      103
Smoothness, quad tree prediction and      242
Smoothness, zero level quantizer and      242
Software, for algorithm simulations      97—102
Spectral density function      11 30
Splash image      see “Image ensemble”
Split-and-merge      198—202
Staircase effect      197
Stationarity assumption      191
Stochastic modeling      9—10
Stream image      see “Image ensemble”
Strings, C Shell script and      101
Subjective quality for adaptive coding      176—186
Subjective quality for quad tree coding      221 222
Subjective quality MSE design modification      188
Subjective quality RBC vs. DCT coding      114 121
Subjective quality, image quality measures      102—104
Sun Computer      97
Tao, B.P.      232
Television      155
Tescher, A.G.      156
Texture, adaptive RBC and      186
Texture, quad tree coding and      206 242
Texture, RBC vs. DCT coding      114
Texture, zero level quantizer and      217
Threshold coding      155—158 166 168 173
Threshold, MSE      195 196
Threshold, quad tree segmentation and      217 224 247
Threshold, reconstruction      206
Tiffany image      119—120 176 244;
Tile effect      4—5
Tile effect, 2d coding results      135
Tile effect, 2d DCT      128
Tile effect, adaptive coding and      183
Tile effect, DCT coding      114 123 242
Tile effect, h-plots and      108
Tile effect, RBC and      51—52 242
Tile effect, subjective effect      104
Tile effect, two source decomposition      5—7
Tile effect, varying block size and      215
Tile effect, VQ and      233
Tile effect, zonal coding and      146
Toeplitz matrices      19 22 258
Training sequence, VQ codebook and      228—230 232 237 247
Transform coding      3
Transform coding 1d boundary response      22
Transform coding 2d boundary response      34—35
Transform coding MS distortion      55—56
Transform coding quad tree segmentation residual      211—217
Transform coding residual rd function      211—213
Transform coding, adaptive coding      155—166
Transform coding, hybrid coding      4 137—146
Transform coding, optimal choice of      53—58
Transform coding, varying block size and      211—217
Transform coding, vector methods and      227—228
Transform coding, VQ and      235
Transform coding, zero level quantizer and      217 220—221; methods”
Two source decomposition      5—7 33
Uniformity criterion, for quad tree      195
UNIX      100
USC image database      96—97
Variable rate scheme      155
Variance 1d RBC reduction      88—91
Variance 2d RBC reduction      91—93; see also “Normalized variance”
Variance core residual coefficient      76
Variance DCT coefficients      58
Variance image ensemble scheme      84—88
Variance of boundary variable      75
Variance prediction ratio      88—93 108—110
Variance prediction variance ratio      88—93 108—110
Variance reduction ratio      265—266
Variance thresholds      166
Variance, adaptive DCT      157
Vector error measurement      104
Vector methods, transform coding and      3
Vector quantization (VQ)      4 225—226
Vector quantization (VQ) adjacent block correlation      51
Vector quantization (VQ) coding performance      231—233 237
Vector quantization (VQ) coding recommendations      242
Vector quantization (VQ) interpolative      234
Vector quantization (VQ) training sequence      228—230 232 237 247
Vector quantization (VQ) tree codebook      232
Vector quantization (VQ), blocking artifacts and      247
Vector quantization (VQ), codebook design for      228—230
Vector quantization (VQ), computational requirement for      226 232 233
Vector quantization (VQ), DCT vs.      237
Vector quantization (VQ), differential VQ      233—234
Vector quantization (VQ), scalar quantization vs.      226—227
Vector quantization (VQ), transform coding and      227—228 235
Vector quantization (VQ), vector dimension and      236
Venetian blind artifact      214
Videoconferencing      155
VQ      see “Vector Quantization”
Walsh — Hadamard transform      3 211—212
Wang, S.H.      63 156
Weighting function for boundary distortion      74—75 78—79
Weighting function, 2d boundary residuals      78—79
Weighting function, adaptive MSE design modification      188
White noise      11 104
Wintz, P.A.      62
Wood, R.C      62
Yan, J.K.      7
Yudilevich, E.      5 6 48
Zero level quantizer      68—70 217 220—221 242 243
Zonal coding      95—96
Zonal coding, adaptive RBC and      173
Zonal coding, associated artifacts      146
Zonal coding, hybrid coding      137—146
Zonal coding, zero level quantizer      70
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå