Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ablameyko S., Goras L., Gori M. — Neural networks for instrumentation, measurement and related industrial applications
Ablameyko S., Goras L., Gori M. — Neural networks for instrumentation, measurement and related industrial applications

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Neural networks for instrumentation, measurement and related industrial applications

Авторы: Ablameyko S., Goras L., Gori M.

Аннотация:

Aims of this book are to disseminate wider and in-depth theoretical and practical knowledge about neural networks in measurement, instrumentation and the related industrial applications. It also creates a clear consciousness about the effectiveness of these techniques as well as the measurement and instrumentation application problems in industrial environments. Finally, it wants to promote the practical use of these techniques in the industry.


Язык: en

Рубрика: Computer science/Генетика, нейронные сети/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2003

Количество страниц: 329

Добавлена в каталог: 15.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$\ell$-finiteness      84
$\mathrm{CO}_{2}$ laser      221 223 240
Ablameyko, S.      1
Aircraft inspection      207 216
Akaike Information Criteria (AIC)      65
Alippi, C.      219
Analog computer      275
Analog hardware      23
Artificial cochlea      30
Artificial nose      30
Artificial retina      29
Artificial tongue      30
ARX model      91
ARX predictor      95
Asymptotic tracking      104
Asynchronous machines      263
Augmented reality (AR)      273 274
Auto-associative neural networks      280
Autocorrelation function      126
Backpropagation      60 69 85 88 98 100 107 122 140 142 148 151 285 294 297 321
Backpropagation through time (BPTT)      61
Baglio, S.      249
Bayes estimation      47
Bayesian      315
Bearing      167 173
Bellman equation      107 109 111
Bias-variance trade-off      63
Bipolar-junction transistors (BJT)      265
Black-box      45 49 54 57 62 68 76
Blom, A.      219
Breast cancer detection      147 152 160
Calibration      11 14 16 36
Cerebellar model articulation controller (CMAC)      53 60 69
Certainty equivalence      109
Chaotic system      120 124 127 132 139
Classification      189 201 207 210 215
Competitive layer      316 317
Composite system      23 27 228 232 237 240
Computational paradigm partitioning      27
Computational paradigm synthesis      27
Condition monitoring      167 175 185
Confidence interval      12 233 236 242
Configurable digital hardware      24
Configurable software simulator      25
Conformable model      275 284 288
Control      190 196 201 208 213 217
Controllability      96
Correlation dimension      120 125 128 130
Corrosion      194 200 207 209 216
Crack      194 200 207 209 216
Criterion function      47 59 72
Cross-validation      63 67 73 233
Curse of dimensionality      85
Dead-beat controller      100
Decision making instruments      291 294
Decision system      191 193 204 216
Defect      168 175 182 188
Defuzzification      259
design methodology      20 27
Detection      189 197 200 204 207 209 216
Deterministic model      303
Diagnosis      167 175 178 185 187
Digital dedicated hardware      24
Digital electronic sensor design      145 161
Digital imaging systems      145 161
Digital weight      24
Discriminant score      315
Distributed measurement system      35
Disturbances      93
Dual control      108
Dual heuristic programming      114
Dynamic backpropagation      61
Dynamic neural architectures      51 54 77
Dynamical system      120 123 128 132
Electro-cardiogram (ECG)      292 296 299 319
Electromagnetic (EM)      273 282 284
Electronic design automation (EDA)      273 282 289
Elman’s network      122
Embedding delay      129 142
Embedding dimension      121 129 138 142
Embedding parameters      121 128 139 143
Embedding theorem      121 128 129
Energy      168 177 180
Enlarged training set      311 313
Errors in variables (EIV)      72
Exact tracking      105
False nearest neighbors method      131
Feature vector      200 210
Features extraction      231 235
Features selection      235 240
Feed-forward neural network      175 178
Feedback linearizability      97
Ferrari, S.      19
Ferrero, A.      9
Filter      292 319
Finite element method (FEM)      285
Finite impulse response multilayer perceptron (FIR-MLP)      58 61
Flow measurements      268
Flux observer      264
Four-points technique      251
Fourier transform      119 127
Fractal dimension      126 128 130
Functional link network (FLN)      53
Fuzzy logic      189 200 210 212 216 257
Fuzzy-model      262
Gao, R.X.      167
Generalization      62 67 73
Giakos, G.C.      145
Golovko, V.      119
Gradient algebra      85
Gradient forward-propagation      86 89
Grey-box      45
Hammerstein model      56
Hardware neural networks      273 276 280 289
Hardware/software partitioning      28
Health      167 177 179 182 187
Hearing sensor      30
hidden      190 193 197 202 204 211
Holographic memory      191 197
Horvath, G.      43
Hot-wire sensors      268
Human-computer interface (HCI)      273
Hybrid-neural system      75
Image      189 194 198 200 204 208 216
Image compression      153
Image fusion      151 158
Image quality contributors      148 159 161 162
Image sensor      29
Image shape and segmentation      152 154 159
Image system design      147 161
Independent component analysis (ICA)      71 119 121
Internal model control      103
Jordan’s network      122
K nearest neighbour classifier (KNN)      234 242 246
Kalman filter      110
Keyhole      222 225 241
Kolmogorov’s entropy      120 125 133 140
Laser cutting      220 223 236
Laser processing      219 228 243
Laser welding      220 224 240
Least square (LS) estimation      47 59 72
Leave one out      219 223 234 236 239
Levenberg — Marquardt      60
Linear autoregressive model      122
Lipschitz quotient      66
Lyapunov’s exponents      120 125 128 132 140 142
Lyapunov’s function      97 99
Lyapunov’s spectrum      121 128 132 142
Machine tool      168 186
Maniakov, N.      119
Manufacturing      167 172 186
Marchesi, R.      9
Maximum likelihood (ML) estimation      47 75
Measurement      9 189 190 192 196 199 200 207 213 216 273 275 287
Medical data set      294 298
Medical instruments      291 319
Membership function      257
Military applications      147 156 161
Minimum description length (MDL)      65
Minimum phase system      102
Mixture of experts (MOE)      75
Model order selection      65
Model reference control      102
Model uncertainty      302 304
Model validation      62 76 287
Modeling capability      52 54
Modular neural network      73 198 202 205
Multi-recurrent neural network      122
Multilayer perceptron (MLP)      51 58 60 65 68 120 140 142 145 147 152 160 165 291 293 298 306 311
Multisensor image classification      148 158
NARMAX model      57 64 73
NARX model      57 62 64 66 73 92 103 109
NARX predictor      95
Nataraj, K.      145
Nd:YAG laser      221 224
Network information criterion (NIC)      65
Networked sensing system      35
Neural implementation      23
Neural paradigm      20 23
Neuro-dynamic programming      110
Neuro-fuzzy      260
NFIR model      57 61 64 66
NOE model      57
Nonlinear autoregressive model      122
Nuclear magnetic resonance imaging      147 151 159
Observability      90
Occam’s razor      58
Odor sensor      30
Optimal control      106
Overfitting      298
Pacut, A.      79
Parameter estimation      44 47 58 67
Parvis, M.      291
Patnekar, N.      145
Pattern recognition and classification      149 150 156 161
Penetration depth      222 226 243
Perceptron      50 189 193 196 214
Permeability      249 253
Permittivity      249 251 253
Petriu, E.M.      273
Phase-locked loops      149 161
Physiologically motivated pulse coupled neural network (PCNN)      148 151 158
PID controllers      115
Piuri, V.      1 19
plasma      222 235
Plume      225 227 244
Poincare’s section      126
Pores      225 241
Prediction      120 122 129 135 138 142
Prediction horizon      140
Predictive control      108
Pressure sensor      31
Principal component analysis (PCA)      71 119 121 130
Probabilistic neural network      149
Prognosis      168 171 179 183 187
Programmable digital architectures      25
Proprioceptive      194 200
Raceway      170 177 180 182
Radial basis function (RBF) network      53 60 69 120
Random pulse      276 290
Real World      273 288
Real-time recurrent learning (RTRL)      62
Recurrent neural network      120 122 173 187
Reference model      101
Reference signal      101
Regressor      51 57 63 73
Regularization      59 69
Reinforcement learning      110
Remote sensing      34 147 158
Resistance      250 253 255 257 263 266 269
resistivity      249 255 268
Robot      189 193 199 206 213 216
Savitsky, Y.      119
Sensitivity      297 303 308 310 318
Sensor diagnosis      33
Sensor enhancement      28
Sensor fusion      32 189 192 198 206 212
Sensor linearization      31
Separation      43
severity      175 178 182
Siegel, M.      189
Signal processing      119 143
Soft-sensors      262
Space reconstruction      121 140
Stability      96
Stabilizability      97
Stabilization      96
Statistical learning theory      65
Statistical model      303 305 311 315 318 321
Stereoscopic      200 204 208
Support Vector Machines (SVM)      72
Symbiont      274
Synaptic      275 280
Syntheric aperture radars (SAR)      147 157 164
System specification      27
System validation      233
Tactile sensor      30
Tapped-delay line operator      80
Temporal backpropagation      61
Thermistors      269
Traceability      16
Tracking      101
Training      190 193 197 201 205 211 217 231 235 239 242
Tree-like networks (TLN)      148 156
Uncertainty      12 291 299 301 304 310 312
Uncertainty combination      304 309
Uncertainty propagation      302
Unfolding-in-time      61
Universal approximation      52 68 83
Unmodeled dynamics      94
Vallan, A.      291
Vibration      168 173 176 185
Virtual environment (VE)      273 288
Virtual prototyping environment (VPE)      273 275 282 287 289
Virtual reality (VR)      273 274
Virtual sensor      34
Virtual workbench      275 284
Virtual world      273
Virtualized reality environment (VRE)      273 275 288
Visual sensor      29
Wavelet      200 210
Wheatstone bridge      255
White-box      45
Wiener model      56
Wiener — Hammerstein model      56
Zero dynamics      102
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2018
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте