Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bigus J.P. — Data mining with neural networks
Bigus J.P. — Data mining with neural networks



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Data mining with neural networks

Àâòîð: Bigus J.P.

Àííîòàöèÿ:

Data Mining with Neural Networks targets executives, managers, and computer professionals with an explanation of data mining and neural networks from a business information and management prospective. The book focuses on the practical and competitive advantages provided by data mining and neural networks when used as strategic technologies within the business.


ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 220

Äîáàâëåíà â êàòàëîã: 10.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Adaline model      27—28
Adaptive resonance theory (ART)      74—75 90 184
Agent communication language (ACL)      121
agents      see intelligent agents
Algorithms, clustering      13
Algorithms, genetic      199—205
Algorithms, rule output from an association      13
Analysis      99—101 187—188
Analysis, output      126
Analysis, sensitivity      100—101 161—162
Application Programming Interface (API)      112 151 175 188
Applications, data mining      16—20
Applications, data mining, customer ranking model      155—165
Applications, data mining, decision support      99
Applications, data mining, energy and utility      20 129
Applications, data mining, finance      18—19
Applications, data mining, health and medical      20
Applications, data mining, manufacturing      19—20
Applications, data mining, market segmentation      131—142
Applications, data mining, marketing      17
Applications, data mining, real estate pricing model      143—153
Applications, data mining, retail      17—18
Applications, data mining, sales forecasting      167—177
Applications, developing business      15—16
Applications, neural network      29
Applications, neural network, developing      109—110
Applications, neural network, transaction processing      110—111
Arithmetic logic unit (ALU)      34
artificial intelligence      27—28
ARTMAP      75
Associative memory      39
Back propagation      69—71 78 184 203
Back propagation, recurrent      73 184
Binary codes      53—54
Boltzmann network      76
Brokering agents      120
Business applications      15—16
central processing unit (CPU)      34
Classification      38 83—84
Clustering      13 38—39 84—85 105—106 107 140 142
Commercial agents      120
Common object request broker (CORBA)      121
Computer systems, digital architecture      34—35
Computer systems, early IBM      4
Computer systems, mainframe data storage      5
continuous values      54—55
Crossover      201—202
Customer ranking application      155—165
Customer ranking application, data representation      156—158
Customer ranking application, deploying      163
Customer ranking application, maintaining      163
Customer ranking application, selecting a model      158
Customer ranking application, selecting architecture      158
Customer ranking application, selecting data      156
Customer ranking application, sensitivity analysis      161—162
Customer ranking application, training/testing      158—161
DATA      43—59
Data mining, adding learning to agents through      124—125
Data mining, agent-directed      126—127
Data mining, applications      16—20 99 129
Data mining, automating using intelligent agents      125—127
Data mining, decision support applications      99
Data mining, definition/description      xiv 9
Data mining, functions      12
Data mining, overview      9—14
Data mining, process      xiv 1—2 10
Data representation      52—55 93 134—135 145—146 156—158 169—170
Data representation, binary codes      53—54
Data representation, continuous values      54—55
Data representation, discrete values      53
Data representation, impact on training time      55—56
Data representation, numeric      52—53
Data representation, one-of N codes      53
Data representation, symbolic      55
Data representation, thermometer codes      54
Data warehousing      6—9
Data warehousing, architectural diagram of      8
Data, cleansing      48—49 125
Data, preparing      125
Data, preprocessing      49—51 125—126
Data, quality      57—58
Data, quantity      57
Data, raw material      43—44
Data, segmenting with neural networks      136—138
data, selecting      49 125 132—134 145 156 168—169
Databases, modern systems      44—46
Databases, parallel      46—48
databases, relational      45
Databases, shared-nothing architectures      47—48
Databases, SMP architectures      46—47
Decision support systems (DSS)      14—15
Delta rule      70
Discrete values      53
Domain knowledge      106 121—124
Encoding      200
Energy and utility applications      20
Executive information systems (EIS)      14
Expert systems, fuzzy      123—124
Expert systems, rule-based      127
Expert systems, traditional      122—123
Filtering agents      117—118
Financial applications      18—19
Forecasting      39—40 86—87
Forecasting, time-series      70—71 86
Fuzzy logic      123—124 191—198
Fuzzy logic, definition/description      198
Fuzzy logic, neural networks and      197
Fuzzy rules      186—187 195—197 198
Fuzzy sets      192—194
Fuzzy variables      195
Generalized delta rule      69
Generalized regression neural network (GRNN)      76
Genetic algorithms      199—205
Gradient descent      69
Graphics, Hinton diagram      105
Graphics, neural network      103—104
Graphics, standard      102—103
Health and medical applications      20
Hinton diagram      105
Hopfield network      76
Information agents      118
Intelligent agents, adding learning to through data mining      124—125
Intelligent agents, automating data mining using      125—127
Intelligent agents, brokering      120
Intelligent agents, classification      127
Intelligent agents, commercial      120
Intelligent agents, definition/description      115—116
Intelligent agents, information      118
Intelligent agents, multiagent systems      120—121
Intelligent agents, office/work flow      119
Intelligent agents, ratering      117—118
Intelligent agents, system      119—120
Intelligent agents, types of      116—121
Intelligent agents, user interface      118—119
Interactive development environment (IDE)      180—181
Internet      118
Knowledge interchange format (KIF)      121
Knowledge query and manipulation language (KQML)      121
Kohonen feature maps      71—73 78 90 184
Learning Vector Quantization (LVQ)      71
Linguistic variables      195
Management information system (MIS)      6
Manufacturing applications      19—20
Mapping, symbolic      50—51
Market segmentation      131—142
Market segmentation, data representation      134—135
Market segmentation, segmenting data with neural networks      136—138
Market segmentation, selecting a model      135
Market segmentation, selecting architecture      135
Market segmentation, selecting data for      132—134
Marketing applications      17
Mean squared error (MSE)      85
Memory, associative      39
Modeling      39 85—86
Models and paradigms      68—76 183—185
Models and paradigms, adaptive resonance theory      74—75 90 184
Models and paradigms, architecture selection      126
Models and paradigms, architectures      93—94
Models and paradigms, automating the building process      94—95
Models and paradigms, back propagation      69—71 78 184 203
Models and paradigms, Boltzmann network      76
Models and paradigms, functions      77
Models and paradigms, generalized regression neural network      76
Models and paradigms, Hopfield network      76
Models and paradigms, Kohonen feature maps      71—73 78 90 184
Models and paradigms, learning      61—65
Models and paradigms, learning, reinforcement      64—65
Models and paradigms, learning, supervised      62—63
Models and paradigms, learning, unsupervised      63—64
Models and paradigms, probabilistic neural network      75—76
Models and paradigms, radial basis function      73—74 184—185
Models and paradigms, recurrent back propagation      73 184
Models and paradigms, selecting      76—77 92—93 146—147 158 170—171
Models and paradigms, temporal difference learning network      185
Mutation      202
networks and networking      see models and paradigms; neural networks
Neural network utility (NNU)      136—137 140 148—150 159—160 164 175 179—190
Neural network utility (NNU), analysis      187—188
Neural network utility (NNU), application generation function      182—183
Neural network utility (NNU), data preparation      181—183
Neural network utility (NNU), deploying applications      188—189
Neural network utility (NNU), fuzzy rule systems      186—187
Neural network utility (NNU), inspectors      187—188
Neural network utility (NNU), interactive development environment      180—181
Neural network utility (NNU), maintaining applications      188—189
Neural network utility (NNU), models and architectures      183—185
Neural network utility (NNU), product overview      179—180
Neural network utility (NNU), scripting      185
Neural network utility (NNU), training/testing      185
Neural network utility (NNU), translate filter      181—182 189
Neural network utility (NNU), visualization      187—188
Neural networks      23—42
Neural networks, commercial applications      29
Neural networks, computer metaphor vs. brain metaphor      26—30
Neural networks, decision-making process      34—36
Neural networks, definition/description      xiv
Neural networks, development process      91—94
Neural networks, development tools      29
Neural networks, functions      38—41
Neural networks, history      23—25
Neural networks, knowledge workers and      32—34
Neural networks, layers      78
Neural networks, learning parameters      82
Neural networks, learning process      37—38
Neural networks, maintaining      112—113
Neural networks, models      see models and paradigms
Neural networks, performance      113
Neural networks, symbol processing vs. subsymbolic processing      25—26
Neural networks, topologies      65—68
Neural networks, training      see training
Normalization      50
numeric data      52—53
object-oriented programming (OOP)      15
Office management agents      119
Online analytical processing (OLAP)      5
Operators, genetic      201—202
Parallel distributed processing (PDP)      28
Perceptron model      27—28
Prediction      39—40
Probabilistic neural network (PNN)      75—76
Programs and programming, object-oriented      15
Radial basis function (RBF)      73—74 184—185
Real estate application      143—153
Real estate application, data representation      145—146
Real estate application, deploying      151
Real estate application, maintaining      151
Real estate application, selecting a model      146—147
Real estate application, selecting architecture      146—147
Real estate application, selecting data      145
Real estate application, training/testing      147—151
Recurrent back propagation      73 184
Regression      39
Retail applications      17—18
Root mean squared (RMS)      85
Rule generation      101—102
Sales forecasting application      167—177
Sales forecasting application, data representation      169—170
Sales forecasting application, deploying      175—176
Sales forecasting application, maintaining      175—176
Sales forecasting application, selecting a model      170—171
Sales forecasting application, selecting architecture      170—171
Sales forecasting application, selecting data      168—169
Sales forecasting application, training/testing      171—175
Scaling      50
scripting      112 121 185
Segmentation      72 105—106 107 136—138 140 142
Segmentation market      131—142
Sensitivity analysis      100—101 161—162
Simple network management protocol (SNMP)      119
Store keeping unit (SKU)      50
Structured Query Language (SQL)      45 58
Symbolic data      55
Symmetrical multiprocessing (SMP)      46 58
System agents      119—120
System object model (SOM)      121
Taxonomies      50—51
Temporal difference learning network      185
Thermometer codes      54
Topologies, feedforward      65—66
Topologies, fully recurrent      67—68
Topologies, limited recurrent      66—67
Training      83—87 126 147—151 158—161 171—175 185
Training, avoiding overtraining      94
Training, classification process      83—84
Training, clustering process      84—85
Training, controlling process with learning parameters      87—91
Training, data representations and impact on time      55—56
Training, forecasting process      86—87
Training, managing data sets      56
Training, modeling process      85—86
Training, parameters      96
Training, supervised      88—89
Training, unsupervised      89—91
transaction processing      110—111
Translating, symbolic to numeric      51
User interface agents      118—119
Variables, discrete      53
Variables, fuzzy      195
Variables, linguistic      195
Visualization      102—106 187—188
Visualization, clustering      105—106
Visualization, Hinton diagram      105
Visualization, neural network graphics      103—104
Visualization, segmentation      105—106
Visualization, standard graphics      102—103
Work flow agents      119
World Wide Web (WWW)      118
Zadeh, Dr. Lotfi      192
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå