Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Back T., Fogel D.B., Michalewicz Z. — Evolutionary computation (Vol. 2. Advanced algorithms and operators)
Back T., Fogel D.B., Michalewicz Z. — Evolutionary computation (Vol. 2. Advanced algorithms and operators)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Evolutionary computation (Vol. 2. Advanced algorithms and operators)

Авторы: Back T., Fogel D.B., Michalewicz Z.

Аннотация:

Volume I provided the general theory of evolutionary computation. This second volume on the other hand aims at introducing the reader to more practical aspects of evolutionary computation. While i found the first volume great, this second volume lacked the details that are required to provide an intuition of the working of advanced evolutionary techniques. I feel that "How to solve it" by Michalewicz and Fogel and "Genetic algorithms + data structures = evolution programs" by Michalewicz both provide this experience useful to implement evolutionary techniques, by not trying to trade-off pages for understandability. I would not recommend this book because it tries to introduce advanced aspects that are too difficult to cover in a single chapter each. If you really want to understand the practice of evolutionary techniques, you need a good intuition of how the various operators and structures work on real problems, just reading a few pages will not do the job.


Язык: en

Рубрика: Computer science/Генетика, нейронные сети/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 270

Добавлена в каталог: 09.11.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Partitioning      50
Path planning      232
Payoff matrix      226
Penalty functions      41—48 79 176
Penalty functions, adaptive      43
Penalty functions, dynamic      44 45
Penalty functions, future directions      47
Penalty functions, static      43
Performance measures      128
Peripheral isolates      105
Permutations, coding      9
Phenotypes      81 111
Phenotypic mating restriction      96 97
Phenotypic sharing      88
Phenotypic-level recombination      157 158
Planning problems      9
Population sizing      89 134—141 158
Population structures      254 255
Positional bias      154
Predator-prey coevolution      228
Predicted square error (PSE) criterion      17
Predictive least squares (PLS) criterion      17
Preferability      33 34
Preference vector      34
Premature convergence      106
Process control      232
Productivity      154
Proportional selection      1 128 247
Punctuated crossover method      206
Punctuated equilibria      101—124
Punctuated equilibria, theory      106 107 120 121
q-ary      248
q-fold binary tournament selection      249 250
Quicksort      248
Random number generators      239—242
Real-valued vectors      157
Rechenberg's 1/5 success rule      172 175
Recombination operators      153 205—207
Recombination operators, adaptive techniques      160—164
Recombination operators, computation time      251
Recombination operators, predictive techniques      159 160
Recombination operators, static techniques      159
Recombination parameters      152—169
Recombination rate      156
Recombination techniques      129
Recombinative bias      155
Reduced surrogate recombination      156
Reduction strategy      112
Relative fitness      12 13
Relative fitness functions      225
Repair algorithms      56—61
Representation      see "Specific representations"
Restricted mating      96—98
Restricted mating policy      94 95
Roulette wheel      247
Routing algorithms      112 113
Rule-based systems      161
Saturday morning problem      18
Scalability      255
Scheduling problems      9 50
Schema bias      155
Schema sampling      136—139
Schemata      135 136 153 154
Search spaces      81
Search spaces, binary      198
Search spaces, continuous      189
Segregated genetic algorithm      72 73
Select      229
Selection      178
Selection methods      219
Selection operators      242
Selection operators, computation time      247—250
Selective self-adaptation      205
Self-adaptation      170 178 185 188—211 214
Self-adaptation, mutation parameters for      143 144
Self-adaptation, parameter control      189
Self-adaptive mutation      173
Self-adaptive parameter control      180
Self-adjusting algorithms      184
Sequential genetic algorithm (SGA)      113 114 119 120
Shared fitness      87—89
Sharing functions      87 88
Shifting balance      121
Shifting balance, theory      103 105
SIMD (single instruction, multiple data) system      99 127 128 254 257
Simulated annealing (SA)      212
Single instruction multiple data (SIMD) system      99 127 128 254 257
Single program, multiple data (SPMD) system      127 128
Speciation      93—100
Specific mate recognition system (SMRS)      104
sphere model      196 199
SPMD (single program, multiple data) system      127 128
Stasis      106
Stochastic universal sampling (SUS)      248
Strategy parameters      188
STROGANOFF      23
Subpopulations      105 118 119
Switch box      109
Symbioorganisms      227
Symbiosis      233
System identification problems      23
Tabu search (TS)      212 213
Tag bits      97—99 162
Tag-template method      95 96
Target vector approach      29
Taxon-exemplar scheme      94 95
Tix Tax      227
Toggle      229
Tournament selection      128
Tournament selection with continuously updated sharing      89
Tournament selection, q-fold binary      249 250
Tournaments      29 227
Transmission function in fitness domain      160
Transportation problem      62—64
Traveling saleman problem (TSP)      9 49 50 65—68 76 158 165 217 219 244 256
tree structures      23
Uniform recombination      154
UPDATEd      229 230
Variable epoch lengths      116
Vector-evaluated genetic algorithm (VEGA)      30 31 70
VLSI circuit design problem      108—113
Weighted sphere model      199
Weighted-sum approach      26 27
WSI-based GA machine      257
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте