Being a multidisciplinary area involving subjects such as mechanics, electronics and computing, the evolution and spread of robotics to different application sectors still requires intense interaction with other fields of science and technology. This applies equally when dealing with wearable robots, meaning robotic systems that a person wears to enhance his/her capabilities in some way. Since the first wearable robots, conceived in the early 1990s as amplifiers of human force or reach, progress in all robotics-related areas has been moving in the direction of a symbiosis between humans and robots as a means of enhancing human abilities in the fields of perception, manipulation, walking and so on]
Although the number of books available on robotics is huge, the existing literature in specific fields of robotic application is not so extensive: moreover, it appears that there is no book conceived as a compendium of all the subject matter involved in such specific emerging areas. The present book is intended to fill the gap in the field of wearable robots - an emerging sector that constitutes a step forward in robotic systems, which rely on the fact of having a human in the loop. That progress in the field is continuously expanding is evident from the number of publications on advances in research and development, new prototypes and even commercial products. Therefore, a book that brings together all the different subject matter encompassed by this discipline will assuredly be of valuable assistance in gaining an appreciation of the wide range of knowledge required: furthermore, by identifying the main concepts involved in dealing with such robots, it can be of help to new researchers wishing to enter the field.
As this book shows, in the field of wearable robots human/robot interaction is a key issue, from a physical or a cognitive point of view, or from both. Therefore, besides a solid knowledge of robotic techniques, research and development in this area also requires some background in anatomical behaviour of the human body and in the human neurological and cognitive systems. In this context. bioinspired or biomimetic design is of special importance for purposes of reproducing human functions or copying human actions respectively. Wearable robots must be designed to cope with specific working conditions, such as the need to accommodate a nonfixed structure, i.e. the human body; to be compliant, light and intrinsically safe enough to be worn by a user; or to be equipped with the requisite interfaces to enable easy intuitive control by a human.