Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Thompson W.J. — Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications
Thompson W.J. — Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications

Автор: Thompson W.J.

Аннотация:

Topics are divided between review material on the mathematics background; numerical-analysis methods such as differentiation, integration, the solution of differential equations from engineering, life and physical sciences; data-analysis applications including least-squares fitting, splines and Fourier expansions. Unique in its project orientation, it features a vast amount of exercises with emphasis on realistic examples from current applications.


Язык: en

Рубрика: Математика/Численные методы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 444

Добавлена в каталог: 01.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Newton, Isaac, as Keeper of the Mint      80
Newton, Isaac, inventing differential equations      221
Nonlinear differential equations      225 235-241
Nonlinear differential equations, catenary equation      270
Normal distribution      see Gaussian distribution
Normalization factors by least squares      199-208
Normalization factors by least squares, best-fit objective function      203
Normalization factors by least squares, dependence on weighting      202
Normalization factors by least squares, for world-record sprints      229
Normalization factors by least squares, normalizing data to fitting function      201
Normalization factors by least squares, normalizing fitting function to data      200
Normalization factors by least squares, Poisson distribution of errors      202
Normalization factors by least squares, program for      204-208
Normalization of Lorentzian functions      405
Notations for derivatives      223 241
Noumerov algorithm      285-287
Noumerov algorithm, program for      294-299
Noumerov, B. V.      285 313
Numerical derivatives      see Derivatives numerical
Numerical integrals      see Integrals numerical
Numerical mathematics compared to pure mathematics      111
Numerical noise      111-122
Numerical noise, computer versus hand calculator      116
Numerical noise, in quadratic equation solution      118
Numerical noise, roundoff errors      112
Numerical noise, truncation errors      112
Numerical Recipes      10 421
Numerical recipes, and numerical noise      116
Numerical recipes, unsavory dishes      241
Nuptial arch      279
Nussbaumer, H. J.      401 420
Nyquist criterion      321
Nyquist criterion, dependence on weights      185
Nyquist criterion, for normalization factors by least squares      200
Nyquist criterion, objective function, Nyquist criterion, definition of      185
Ohm's law resistance      259
Oppenheim, A. V.      334 345 375 376
Order of a differential equation      224
Ordinary differential equations      224
Ordinary least squares (OLS)      191
Orthogonal functions      185-189
Orthogonal functions, and linear least squares      188
Orthogonal functions, for Fourier expansions      3 19
Orthogonal functions, Legendre polynomials      187
Orthogonal functions, Schmidt orthogonalization      186
Outliers in least-squares fitting      184
Overdamping      263
Overshoot      see Wilbraham-Gibbs overshoot
Paeth, A. W.      80 98
Parameter bias, dependence on error model      212
Parameter bias, for Gaussian distribution      212
Parameter bias, for small samples      2 13
Parameter bias, for uniform distribution      213
Parameter bias, Gaussian distribution divergence      213
Parameter bias, in slope from log transformation      211
Parameter bias, Monte Carlo simulation      214
Parameter bias, origin of in log transformation      209
Parametric integration for Gaussian moments      183
Parseval's theorem, interpretation of      320
Parseval's theorem, relation to Wiener — Khinchin theorem      320
Parseval's theorem, statement of      320
Partial differential equations      224
Pascal, and C      6
Pascal, translating between Pascal and C      423-428
Patient MAC      366
Pedagogues, modem      269
Peters, R. D.      333 376
Phase angle      25
Phase angle, in complex plane      41
Phase angle, of forced motion      266
Phase-space plot      264
Phasor diagram      42
Pi to computer accuracy      46
Pippard, A. B.      40 43 49 151 258 264 269 313 386 420
Plane-polar coordinates and complex numbers      28
Plauger, P. J.      8 15
Poincar$\acute{e}$ map      264
Poisson distribution      185
Poisson distribution, and normalization by least squares      202
Poisson distribution, for error model      210
Polynomial wiggle problem      154
Potential from a charged wire      145-151
Potential from a charged wire, analytical integral      146
Potential from a charged wire, integral for      145
Potential from a charged wire, numerical integrals      148-151
Power series      see Taylor series
Power spectrum of EEG      372
Pratt, W. K.      343 345 376
Predictor formulas, Adams methods      245
Predictor formulas, Adams trapezoid predictor for first-order equation      246
Predictor formulas, Adams — Simpson predictor for first-order equation      246
Predictor formulas, central Euler predictor for first-order equation      243
Predictor formulas, Euler method 1 for second-order equation      280
Predictor formulas, Euler method 2 for second-order equation      281
Predictor formulas, Euler method 3 for second-order equation      281
Predictor formulas, Euler methods      242 280
Predictor formulas, Euler methods summarized      281
Predictor formulas, example of Euler methods for second-order equation      282
Predictor formulas, forward Euler predictor for first-order equation      243
Predictor formulas, testing Euler predictors for first-order equations      244
Predictor formulas, testing Euler predictors for second-order equations      29 1-294
Predictor-corrector methods      247
Press, W. H.      7 10 15 144 151 304 313 360 375 376 421 422
probability distribution      184
Probability distribution, Gaussian      182
Probability distribution, moments of      182 211
Probability distribution, Poisson      185
Probability distribution, uniform      212
Program, complex-arithmetic functions      21
Program, conjugate and modulus of complex functions      25
Program, convert between coordinates      45
Program, convoluting discretized functions      398
Program, cosine and sine      67
Program, DFT of oscillator      326
Program, estimating significant digits      112
Program, fast Fourier transform      360
Program, first-order differential equations      247
Program, Fourier analysis of EEG      368
Program, Fourier series      340
Program, geometric series      54
Program, Horner polynomial      104
Program, normalization by least squares      204
Program, Noumerov algorithm for second-order equations      294
Program, potential from a charged wire      148
Program, power-series expansion      63 93
Program, quantum harmonic oscillator      301
Program, Riccati transformation      308
Program, roots of quadratic equations      119
Program, second-order Euler algorithms      287
Program, Simpson integral formula      137
Program, spline fitting      161
Program, straight-line least squares      214
Program, trapezoid integral formula      136
Program, Voigt profile      4 13
Program, working function value, derivatives, and integral      107
Program, world-record sprints      229
Programs and functions, index of      429-430
Programs, caveat emptor      10
Programs, error messages from      11
project      9-10 14
Project, computing derivatives numerically      130
Project, convert between coordinates      45
Project, electrostatic potential of a wire      145
Project, fast Fourier transform program      360
Project, Fourier analysis of EEG      365
Project, Noumerov method for second-order equations      294
Project, second-order Euler methods      287
Project, solving first-order differential equations      247
Project, spline fitting      161
Project, straight-line least-squares fits      214
Project, testing the convergence of series      85
Project, Voigt profile      4 11
Proportional errors      2 10
Protter, M. H.      51 59 98 376
Pure mathematics compared to numerical mathematics      111
Pythagoras, Theorem of      33
Pythagoras, theorem of, testing numerically      97
Quadrants, sign of circular functions in      45
Quadratic equation solution, program for stable method      119
Quadratic equation solution, subtractive cancellation in      118
Quantum harmonic oscillator      299-304
Quantum harmonic oscillator, Noumerov solution      301-304
Quantum leap      303
Radians to degrees      66
Rasala, R.      178 179
Raster      347
Real number      19
Recurrence      84
Recursion      84
Recursion, logical problems with      85
Reed, B. C.      191 219
Relative errors in differential equation solutions      242
Relaxation time in world-record sprints      226
Repetition in mathematics and computing      83
Repetition in mathematics and computing, iteration      84
Repetition in mathematics and computing, recurrence      84
Repetition in mathematics and computing, recursion      84
Resonance      265-269
Resonance, amplitude of      266
Resonance, described by Lorentzian function      389
Resonance, in Fourier transform of oscillator      382
Resonance, maximum amplitude      267
Resonance, phase of      266
Riccati transformation      306-311
Riccati transformation, example of      307
Riccati transformation, program for      308-311
Richardson extrapolation      133
Riemann zeta function      353
Ringing      348
Roberts, R. A.      334 376
Romberg integration      144
Roundoff errors      112
Rubinstein, R.      178 179
Rucker, R.      77 98
sample programs      9
Sample programs, simple example (geometric series)      55
Sawtooth function Fourier series      347-349
Schildt, H.      7 15
Schmidt orthogonalization      186
Schr$\ddot{o}$dinger equation      43 225
Schr$\ddot{o}$dinger equation, for harmonic oscillator      299
Schultz, M. H.      178 179
Schumaker, L. L.      158 178 179
Second-order differential equations      258
Second-order differential equations, and forced motion      265
Second-order differential equations, complex-number representation      265
Second-order differential equations, for free motion      261-264
Second-order differential equations, for mechanical and electrical systems      260
Second-order differential equations, removing first derivatives      284-285
Separable differential equation for world-record sprints      228
Shammas, N.      8 15 423
Shannon sampling theorem      321
Siegel, A. F.      181 219
Sigmoid function      see Logistic growth
Significant digits, program for      112
Simpson formula, comparison with trapezoid formula      142
Simpson formula, composite formula      141
Simpson formula, derivation of      140
Simpson formula, error estimate      141
Simpson formula, for numerical integrals      140-142
Simpson formula, graphical interpretation      141
Simpson formula, program for      137 141
Simpson formula, testing with cosines      143
Sine function, programming series for      86
Sine function, series for small angles      66
Sine function, Taylor series for      65
Snell, J. L.      181 182 211 219
Solomon, F.      184 185 219 397 420
Source term in second-order differential equation      265
Speed testing program for      364
Spehlmann, R.      366 376
Spline derivatives      171
Spline derivatives, and unstable problems      174
Spline derivatives, for cosines      173
Spline derivatives, for working function      171
Spline endpoint conditions      155 159-161
Spline endpoint conditions, for working function      160
Spline endpoint conditions, natural spline      155
Spline fitting, algorithm for      158
Spline fitting, and computer graphics      178
Spline fitting, and computer-aided design      178
Spline fitting, and type fonts      178
Spline fitting, combined with least-squares fitting      218
Spline fitting, compared to least squares      153
Spline fitting, efficiency of      175
Spline fitting, equations      156-159
Spline fitting, exact fit to data      153
Spline fitting, history of      178
Spline fitting, of working function      155
Spline fitting, program for      161
Spline fitting, properties of fit      156
Spline fitting, versus polynomial fit      153
Spline integration      175-177
Spline integration, compared to trapezoid and Simpson rules      175 177
Spline integration, derivation      175
Spline integration, for cosine      177
Spline integration, for working function      177
Spline integration, function for      176
Spline integration, testing the program      176
Spline interpolation      168-174
Spline interpolation, first derivative from      168
Spline interpolation, for cosines      173
Spline interpolation, for working function      170
Spline interpolation, second derivative from      168
Spline interpolation, third derivative from      169
Spline interpolation, value from      168
Spline, definition of      154
Spline, knot of      155
Spline, natural      160-161
Spline, order of      155
Square root, linearized approximations      78
Square-pulse function, Fourier integral transform of      383
Square-pulse function, Fourier series for      338-340
Stability and chaos in logistic growth      239
Standard deviation      182
Standard deviation, in proportional-errors model      210
Standard deviation, of independent Gaussian errors      403
Star notation for convolution      393
Steinmetz, C. P.      43
Stellar spectra, Voigt profile for      419
Stiff differential equations      304-312
Stiff differential equations, Madelung transformation      311
Stiff differential equations, nature of      305
Stiff differential equations, numerical example of      306
Stiff differential equations, origin of term      305
Stiff differential equations, Riccati transformation      306
Stochastic process      184
Stopping criterion for first-order differential equations      247
Straight-line least squares      190-199
Straight-line least squares with errors in both variables, error estimates      199
Straight-line least squares with errors in both variables, minimum objective function      198
Straight-line least squares, errors in both variables      190
Straight-line least squares, program for      214-217
Straight-line least squares, testing and using program      217
Straight-line least squares, weighting models      190
Subtractive cancellation      116-119
Subtractive cancellation, in quadratic equation solution      118
Subtractive cancellation, in spline fitting      174
Subtractive cancellation, in variance calculations      117
Symmetry conditions for Fourier series      339
1 2 3 4
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте