Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bandyopadhyay S., Pal S.K. — Classification and learning using genetic algorithms. Applications in bioinformatics and web intelligence
Bandyopadhyay S., Pal S.K. — Classification and learning using genetic algorithms. Applications in bioinformatics and web intelligence



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Classification and learning using genetic algorithms. Applications in bioinformatics and web intelligence

Авторы: Bandyopadhyay S., Pal S.K.

Аннотация:

Genetic algorithms (GAs) are randomized search and optimization techniques
guided by the principles of evolution and natural genetics; they have a large
amount of implicit parallelism. GAs perform multimodal search in complex
landscapes and provide near-optimal solutions for objective or tness func-
tion of an optimization problem. They have applications in elds as diverse
as pattern recognition, image processing, neural networks, machine learning,
jobshop scheduling and VLSI design, to mention just a few.
Traditionally, GAs were designed to solve problems with an objective to
optimize only a single criterion. However, many real-life problems involve mul-
tiple con
icting measures of performance, or objectives, which need simulta-
neous optimization. Optimal performance according to one objective, if such
an optimum exists, often implies unacceptably low performance in one or
more of the other objective dimensions, creating the need for a compromise
to be reached. A suitable set of solutions, called the Pareto-optimal set, to
such problems is one where none of the solutions can be further improved on
any one objective without degrading it in another. In recent times, there has
been a spurt of activities in exploiting the signi cantly powerful search capa-
bility of GAs for multiobjective optimization, leading to the development of
several algorithms belonging to the class of multiobjective genetic algorithms
(MOGAs).


Язык: en

Рубрика: Биология/

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 311

Добавлена в каталог: 12.03.2011

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте