Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics
Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Transversal theory. An account of some aspects of combinatorial mathematics

Автор: Mirsky L.

Аннотация:

"Transversal theory, the study of combinatorial questions of which Philip Hall's classical theorem on 'distinct representatives' is the fount and origin, has only recently emerged as a coherent body of knowledge. The pages that follow represent a first attempt to provide a codification of this new subject and, in particular, to place it firmly in the context of the theory of abstract independence. I have sought to make the exposition leisurely, systematic, and as nearly self-contained as possible; but since the length of the book had to be kept within conventional bounds, it has been necessary to exclude certain topics even though they impinge on my central theme. Thus I say nothing about the subject of 'flows in networks' initiated by Ford and Fulkerson; I pass in silence over the exciting possibilities of establishing combinatorial theorems by the method of linear programming; and I refer only occasionally to the theory of graphs. I hope that as a result my presentation has gained in care and clarity what it has undoubtedly lost in breadth of treatment.
The account offered here is intended primarily for three classes of readers. It aims to serve as a detailed introduction to the methods of transversal theory for postgraduate students who wish to specialize in combinatorial mathematics. It will, perhaps, provide a convenient work of reference for experts in the field. And finally, it is a repository of combinatorial results which those engaged in the application of mathematical techniques to practical problems may find occasion to invoke..." L.Mirsky


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1971

Количество страниц: 269

Добавлена в каталог: 04.12.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Mendelsohn — Dulmage theorem      51 169 182 185 212
Mendelsohn, N.S.      51 169 182 185 212 242
Menger's graph theorem      22 23 30 152 167 217
Menger, K.      22 23 152 167 217 218 242
Milgram, A.N.      72 239
Miller, G.A.      167 242
Minc, H.      88 213 242
Mirsky, L.      37 38 50 51 72 88 98 110 111 125 128 129 167 168 182 187 212 213 214 218 242 243
Modular inequality      91
Nash-Williams's rank formula      131 145 146 218
Nash-Williams, C.St.J.A.      131 145 218 242
Neumann, B.H.      66 71 72 243
Node      21
Non-intersecting set of lines      191
O*-groups      68 72
O-groups      66—68 72
One-one correspondence      3
Order on a group      66
Order, partial      16
Order, reciprocal      17
Order, total      17
Ore, O.      11 23 30 40 50 72 182 184 214 216 243
Ostrand, P.A.      88 243
Partial order      16
Partial order by inclusion      17
Partial order in a group      66
Partial order, extension of      19 68
Partial transversal(s) (PT)      24 30 31 40 41 43 45 46 58 66 101 105 106 122 125 163
Partial transversal(s) (PT), disjoint      74 75
Partial transversal(s) (PT), independent      93 95 100
Partition      7
Partition into independent sets      135 146
Partition into partial transversals      45 46 66
Partition into spanning sets      137 146
Path (in a graph)      22
Pattern of a matrix      199
Pattern, doubly-stochastic (d.s.)      199—204
per A      193
Perfect, H.      10 23 37 38 51 72 110 111 125 126 128 129 134 146 158 161 167 182 213 214 217 218 220 223 224 226 230 231 232 233 235 242 243
Perles, M.A.      72 243
Permanent      193
Permutation      3
Permutation, matrix      183
Piff, M.J.      128 243
Place (in a matrix)      183
Power set      3
Pre-independence structure (space)      90
Preston, G.B.      110 236
Product topology      21
Proliferation      39
Proper inclusion      2
Proper subset      2
Pym, J.S.      10 23 32 38 129 134 146 167 182 216 219 220 221 237 243
q      113
Rado choice function      52
Rado's selection principle      52 71 72 73 216
Rado's selection principle, applications of      56 62 64—70 72 73 96 126 127
Rado's theorem on bipartite families      190 191 212 218
Rado's theorem on independent transversals      93 96 110 145 215
Rado, R.      15 16 23 38 51 52 59 71 72 81 86 88 89 93 98 106 110 111 128 145 146 170 175 190 212 215 216 218 221 222 224 225 228 235 244
Range (of a mapping)      3
Rank      91 121 122
Rank formula, Nash-Williams's      131 145 146 218
Rank function      91 107—109 127 131 155
Rank function of complementary structure      141
Rank-finite set      91
Rankin, R.A.      182 244
Reciprocal order      17
Ree, R.      213 242
Replacement axiom (property)      90
Replacement axiom (property), universal      231
Replication      39
Representatives, system of      25
Representing set      25 189 190
Restricted family      34
Restriction of independence structure      91
Restriction of mapping      3
Rice N.M.      73 244
Robertson, A.P.      129 244
Rota, G.-C.      218 220 239
Rotman, B.      23 244
Rudeanu, S.      38 239
Ryser, H.J.      51 88 150 187 206 208 212 213 222 242 244
Scattered set      183
Scherk, P.      110 244
Schroeder — Bernstein theorem      12 23 216
Scorza, G.      167 244
Scrimger, E.B.      72 182 221 237
Seidenberg, A.      72 245
Selection principle, Rado's      52 56 62 64—73 96 126 127 216
Separating set (in a graph)      22
Set      1
Set, admissible      33
Set, characteristic      225
Set, cofinite      100
Set, denumerable      13
Set, dependent      90
Set, empty      1
Set, independent      90
Set, ordered      17
Set, partially ordered      16
Set, rankfinite      91
Set, representing      25 189 190
Set, scattered      183
Set, separating      22
Set, spanning      123 137 140
Set, totally admissible (total)      34 124
Set, totally ordered      17
Sets, disjoint      2
Sets, linked      34 36 43
Sets, theory of      23
Shmushkovitch, V.      182 245
Shue, S.      182 245
Sierpinski, W.      13 245
Simmons, G.F.      73 245
Simple structure      139
Singleton      2
Slomson, A.B.      71 236
Space, independence      90
Space, pre-independence      90
Spanning set      123 137 140
Sperner, E.      19 167 245
Standard extremal theorems      218
Standard interpretation      36
Stein, S.K.      72
Stone's representation theorem      69 70 72 73
Stone, M.H.      69 70 72 73 245
Strict inclusion      2
Strict system of distinct representatives (SSDR)      78
Structure, complementary      140 141 146
Structure, hereditary      90
Structure, independence      90
Structure, linear      112—118 128
Structure, pre-independence      90
Structure, simple      139
Structure, transversal      101 112 138—140 146
Structure, trivial      91
Structure, universal      91
Subfamily      6
Subfamily, maximal      34 123 181 182
Subgraph      22 65
Submodular function      219 220
Subset      2
Subset, proper      2
Substitution      39
Surjection      3
Symmetric difference      5
Symmetric interpretation      36
Symmetrized form of Rado's theorem      140 143 146
System of distinct representatives (SDR)      25
System of representatives      25
System of representatives, common (CSR)      147—149 156 157 170—175 189
Szekeres, G.      72 238
Szpilrajn, E.      19 245
T*      40
Tarski, A.      23
Term rank      212
Titchmarsh, E.G      195 245
Topological product      21
Topological space      20
Topological space, compact      20
Topological space, discrete      20
topology      20
Total order      17
Total set      34 124
Total transversal      25
Totally admissible (total) set      34 124
Transfinite form of Hall's theorem      56
Transfinite form of Rado's theorem      96
Transversal      24 27 46 47 49 50 56 59 106 127 162 163 170
Transversal index      40—42
Transversal structure      101 112 138—140
Transversal structure, relation to independence structures      102 103 128
Transversal structure, relation to linear structures      113 114 116 128
Transversal, common (CT)      147 149 151 156 158 159 167 177 178 180 181
Transversal, common partial (CPT)      147 151 176 177
Transversal, independent      93 96 97 110
Transversal, partial      24 30 31 40 41 43 45 46 58 66 74 75 101 105 106 122 125 163
Transversal, total      25
Trivial structure      91
Truncation      92
Tucker, A.W.      50 218 241
Tukey's Lemma      18 19
Tutte, W.T.      110 128 245
Tverberg, H.      72 110 218 245
Tychonoff's theorem      21 23 71
union      2 7
Universal replacement property      231
Universal structure      91
Valko, S.      182 241
Vamos, P.      128 225 245
Van der Waerden, B.L.      110 150 167 182 193 194 213 245
Vaughan, H.E.      38 51 71 72 239
Vogel, W.      88 168 212 213 218 245
w(Q)      183
Welsh, D.J.A.      38 110 128 146 167 215 220 223 224 226 229 234 239 243 246
Weston, J.D.      23 129 244 246
Weyl, H.      38 246
Whaples, G.      38 71 72 182 238
Whitney, H.      110 118 128 146 225 246
Width of a matrix      183
Wolk, E.S.      71 246
X\Y      2
x|A, $x \nmid A$      119
Yamamoto, K.      88 246
Z-matrix      183
Zorn's lemma      17 19 23
Zorn, M.      17 23 246
|x|      12
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте