Авторизация 
		         
		        
					
 
		          
		        
			          
		        
			        Поиск по указателям 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Mirsky L. — Transversal theory. An account of some aspects of combinatorial mathematics 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме    Нашли опечатку? 
 
                                
                                    Название:   Transversal theory. An account of some aspects of combinatorial mathematicsАвтор:   Mirsky L.  Аннотация:  "Transversal theory, the study of combinatorial questions of which Philip Hall's classical theorem on 'distinct representatives' is the fount and origin, has only recently emerged as a coherent body of knowledge. The pages that follow represent a first attempt to provide a codification of this new subject and, in particular, to place it firmly in the context of the theory of abstract independence. I have sought to make the exposition leisurely, systematic, and as nearly self-contained as possible; but since the length of the book had to be kept within conventional bounds, it has been necessary to exclude certain topics even though they impinge on my central theme. Thus I say nothing about the subject of 'flows in networks' initiated by Ford and Fulkerson; I pass in silence over the exciting possibilities of establishing combinatorial theorems by the method of linear programming; and I refer only occasionally to the theory of graphs. I hope that as a result my presentation has gained in care and clarity what it has undoubtedly lost in breadth of treatment.
Язык:  Рубрика:  Математика /Серия:  Сделано в холле Статус предметного указателя:  Готов указатель с номерами страниц ed2k:   ed2k stats Год издания:  1971Количество страниц:  269Добавлена в каталог:  04.12.2010Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Предметный указатель 
                  
                
                    
                        Mendelsohn — Dulmage theorem 51 169 182 185 212 Mendelsohn, N.S. 51 169 182 185 212 242 Menger's graph theorem 22 23 30 152 167 217 Menger, K. 22 23 152 167 217 218 242 Milgram, A.N. 72 239 Miller, G.A. 167 242 Minc, H. 88 213 242 Mirsky, L. 37 38 50 51 72 88 98 110 111 125 128 129 167 168 182 187 212 213 214 218 242 243 Modular inequality 91 Nash-Williams's rank formula 131 145 146 218 Nash-Williams, C.St.J.A. 131 145 218 242 Neumann, B.H. 66 71 72 243 Node 21 Non-intersecting set of lines 191 O*-groups 68 72 O-groups 66—68 72 One-one correspondence 3 Order on a group 66 Order, partial 16 Order, reciprocal 17 Order, total 17 Ore, O. 11 23 30 40 50 72 182 184 214 216 243 Ostrand, P.A. 88 243 Partial order 16 Partial order by inclusion 17 Partial order in a group 66 Partial order, extension of 19 68 Partial transversal(s) (PT) 24 30 31 40 41 43 45 46 58 66 101 105 106 122 125 163 Partial transversal(s) (PT), disjoint 74 75 Partial transversal(s) (PT), independent 93 95 100 Partition 7 Partition into independent sets 135 146 Partition into partial transversals 45 46 66 Partition into spanning sets 137 146 Path (in a graph) 22 Pattern of a matrix 199 Pattern, doubly-stochastic (d.s.) 199—204 per A 193 Perfect, H. 10 23 37 38 51 72 110 111 125 126 128 129 134 146 158 161 167 182 213 214 217 218 220 223 224 226 230 231 232 233 235 242 243 Perles, M.A. 72 243 Permanent 193 Permutation 3 Permutation, matrix 183 Piff, M.J. 128 243 Place (in a matrix) 183 Power set 3 Pre-independence structure (space) 90 Preston, G.B. 110 236 Product topology 21 Proliferation 39 Proper inclusion 2 Proper subset 2 Pym, J.S. 10 23 32 38 129 134 146 167 182 216 219 220 221 237 243 q       113 Rado choice function 52 Rado's selection principle 52 71 72 73 216 Rado's selection principle, applications of 56 62 64—70 72 73 96 126 127 Rado's theorem on bipartite families 190 191 212 218 Rado's theorem on independent transversals 93 96 110 145 215 Rado, R. 15 16 23 38 51 52 59 71 72 81 86 88 89 93 98 106 110 111 128 145 146 170 175 190 212 215 216 218 221 222 224 225 228 235 244 Range (of a mapping) 3 Rank 91 121 122 Rank formula, Nash-Williams's 131 145 146 218 Rank function 91 107—109 127 131 155 Rank function of complementary structure 141 Rank-finite set 91 Rankin, R.A. 182 244 Reciprocal order 17 Ree, R. 213 242 Replacement axiom (property) 90 Replacement axiom (property), universal 231 Replication 39 Representatives, system of 25 Representing set 25 189 190 Restricted family 34 Restriction of independence structure 91 Restriction of mapping 3 Rice N.M. 73 244 Robertson, A.P. 129 244 Rota, G.-C. 218 220 239 Rotman, B. 23 244 Rudeanu, S. 38 239 Ryser, H.J. 51 88 150 187 206 208 212 213 222 242 244 Scattered set 183 Scherk, P. 110 244 Schroeder — Bernstein theorem 12 23 216 Scorza, G. 167 244 Scrimger, E.B. 72 182 221 237 Seidenberg, A. 72 245 Selection principle, Rado's 52 56 62 64—73 96 126 127 216 Separating set (in a graph) 22 Set 1 Set, admissible 33 Set, characteristic 225 Set, cofinite 100 Set, denumerable 13 Set, dependent 90 Set, empty 1 Set, independent 90 Set, ordered 17 Set, partially ordered 16 Set, rankfinite 91 Set, representing 25 189 190 Set, scattered 183 Set, separating 22 Set, spanning 123 137 140 Set, totally admissible (total) 34 124 Set, totally ordered 17 Sets, disjoint 2 Sets, linked 34 36 43 Sets, theory of 23 Shmushkovitch, V. 182 245 Shue, S. 182 245 Sierpinski, W. 13 245 Simmons, G.F. 73 245 Simple structure 139 Singleton 2 Slomson, A.B. 71 236 Space, independence 90 Space, pre-independence 90 Spanning set 123 137 140 Sperner, E. 19 167 245 Standard extremal theorems 218 Standard interpretation 36 Stein, S.K. 72 Stone's representation theorem 69 70 72 73 Stone, M.H. 69 70 72 73 245 Strict inclusion 2 Strict system of distinct representatives (SSDR) 78 Structure, complementary 140 141 146 Structure, hereditary 90 Structure, independence 90 Structure, linear 112—118 128 Structure, pre-independence 90 Structure, simple 139 Structure, transversal 101 112 138—140 146 Structure, trivial 91 Structure, universal 91 Subfamily 6 Subfamily, maximal 34 123 181 182 Subgraph 22 65 Submodular function 219 220 Subset 2 Subset, proper 2 Substitution 39 Surjection 3 Symmetric difference 5 Symmetric interpretation 36 Symmetrized form of Rado's theorem 140 143 146 System of distinct representatives (SDR) 25 System of representatives 25 System of representatives, common (CSR) 147—149 156 157 170—175 189 Szekeres, G. 72 238 Szpilrajn, E. 19 245 T*       40 Tarski, A. 23 Term rank 212 Titchmarsh, E.G 195 245 Topological product 21 Topological space 20 Topological space, compact 20 Topological space, discrete 20 topology 20 Total order 17 Total set 34 124 Total transversal 25 Totally admissible (total) set 34 124 Transfinite form of Hall's theorem 56 Transfinite form of Rado's theorem 96 Transversal 24 27 46 47 49 50 56 59 106 127 162 163 170 Transversal index 40—42 Transversal structure 101 112 138—140 Transversal structure, relation to independence structures 102 103 128 Transversal structure, relation to linear structures 113 114 116 128 Transversal, common (CT) 147 149 151 156 158 159 167 177 178 180 181 Transversal, common partial (CPT) 147 151 176 177 Transversal, independent 93 96 97 110 Transversal, partial 24 30 31 40 41 43 45 46 58 66 74 75 101 105 106 122 125 163 Transversal, total 25 Trivial structure 91 Truncation 92 Tucker, A.W. 50 218 241 Tukey's Lemma 18 19 Tutte, W.T. 110 128 245 Tverberg, H. 72 110 218 245 Tychonoff's theorem 21 23 71 union 2 7 Universal replacement property 231 Universal structure 91 Valko, S. 182 241 Vamos, P. 128 225 245 Van der Waerden, B.L. 110 150 167 182 193 194 213 245 Vaughan, H.E. 38 51 71 72 239 Vogel, W. 88 168 212 213 218 245 w(Q)       183 Welsh, D.J.A. 38 110 128 146 167 215 220 223 224 226 229 234 239 243 246 Weston, J.D. 23 129 244 246 Weyl, H. 38 246 Whaples, G. 38 71 72 182 238 Whitney, H. 110 118 128 146 225 246 Width of a matrix 183 Wolk, E.S. 71 246 X\Y       2 x|A,        119 Yamamoto, K. 88 246 Z-matrix 183 Zorn's lemma 17 19 23 Zorn, M. 17 23 246 |x|       12 
                            
                     
                  
			Реклама