Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Visconti A. — Quantum field theory. Volume 1
Visconti A. — Quantum field theory. Volume 1



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Quantum field theory. Volume 1

Àâòîð: Visconti A.

ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1969

Êîëè÷åñòâî ñòðàíèö: 309

Äîáàâëåíà â êàòàëîã: 01.11.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Observables, non-local field, orbital angular momentum of      111—113
Observables, non-local field, property of charge of      120
Observables, non-local field, quantum numbers relating to      118
Observables, non-local field, spin of      110—111
Observables, non-local field, total charge of      115—118 121
Observables, non-local field, vacuum state of      109
Observables, non-local field, variance of expectation values of      92—93
Observables, sets of commuting      43
Observables, sets of eigenvectors of      193—195
Observables, variance of expectation values of      204—206
Operator, charge parity      204
Operator, complete      14
Operator, creation and annihilation      see "Creation and annihilation operators"
Operator, metric      262
Operator, Racah      218
Operators for state vector      46
Operators for state vector, properties of      47
Operators, field variables as      113—115
Operators, tensor product of      22
Operators, theorem for Hermitian      13
Operators, theorem for unitary      14
Orbital angular momentum in Dirac field      238
Orbital angular momentum of a field      111—113
Orbital angular momentum of arbitrary spin field      200
Orbital angular momentum, eigenvalues of      112
Orbital angular momentum, tensor      102—103 107
Parity of field      113—115
Parity of field and state vector      115
Particles, elementary and representation of Lorentz group      135—139
Particles, elementary, classification of      133—135
Particles, elementary, decay scheme of      134
Particles, elementary, differential operator of      144
Particles, elementary, Majorana      230
Particles, elementary, spin of      137 144
Particles, elementary, wave equation of      151
Particles, free      128—131
Particles, free, definition of      129
Particles, free, reduction postulate for wave equations of      130
Particles, free, wave equations of      159—160
Pauli matrices of Dirac equation      220
Pauli — Heisenberg quantization method      57
Pauli, exclusion principle      192—193
Peierls relation in variational formulation      90
Petiau — Duffin — Kemmer relation      145 278—281
Poisson bracket      19 20 24 60 61 63
Poynting vector      249
Proca — de Broglie equations      154
Proca — de Broglie field      270—281
Proca — de Broglie field, Lagrangian formulism and quantization of      272—273
Proca — de Broglie field, observables of      273
Proca — de Broglie field, Petiau — Duffin — Kemmer relations for      278—281
Proca — de Broglie field, Stueckelberg formulation for      273—275
Proca — de Broglie field, vector mesons of      271
Proca — de Broglie field, wave equations of      271—272
Proca — de Broglie field, wave mechanics of      275—278
Pseudo-scalar fields      see "Scalar and pseudo-scalar fields"
Quantization in indefinite metric      262—267
Quantization of linear field equations      159-213
Quantization of linear field equations with constant coefficients      214—281
Quantization of linear field equations with constant coefficients and non-quantized Dirac equation      214—234
Quantization of linear field equations with constant coefficients and quantized Dirac equation      234—247
Quantization of linear field equations with constant coefficients in Maxwell field      247—270
Quantization of linear field equations with constant coefficients in Proca — de Broglie field      270—281
Quantization of spin 0 field      see "Spin 0 fields"
Quantized field      103—109 110—118
Quantized field, action of      103
Quantized field, current vector of      116
Quantized field, energy momentum conservation of      107
Quantized field, orbital angular momentum of      111—113
Quantized field, parity of      113—115
Quantized field, Schwinger — Feynman variational principle and      104
Quantized field, spin of      110—111
Quantized field, symmetrical energy-momentum tensor of      108
Quantized field, total angular momentum of      109
Quantized field, total angular momentum operator of      105 107
Quantized field, total charge of      115—118
Quantized field, total momentum operator of      105 107
Quantized field, vacuum state of      109
Quantizing a field      xiii 40
Quantum electrodynamics, basic ideas of      xvii—xx
quantum mechanics      23—27
Quantum mechanics, classical mechanics and      24
Quantum mechanics, maximal measurement of      25
Quantum mechanics, origins of      23
Quantum mechanics, Schroedinger — Heisenberg pictures in      26—27
Quantum system and classical equivalent      42
Quantum system, description by classical system of      74
Racah operator      218
Reduction postulate for wave equations      130 142—146
Scalar and pseudo-scalar fields      160—184
Scalar and pseudo-scalar fields, commutation rules      182
Scalar and pseudo-scalar fields, field equations of      183
Scalar and pseudo-scalar fields, non-Hermitian      174—181
Scalar and pseudo-scalar fields, non-Hermitian, energy-momentum tensor of      175 180
Scalar and pseudo-scalar fields, non-Hermitian, number operator of      176 179—181
Scalar and pseudo-scalar fields, quantization of Hermitian      171—174
Scalar and pseudo-scalar fields, vacuum-expectation values of      183—184
Scalar and pseudo-scalar fields, various solutions of wave equations of      160—170
Scalar and pseudo-scalar fields, various solutions of wave equations of, table of functions of      163—167
Scalar and pseudo-scalar fields, wave equation of      160
Schroedinger equation      26
Schroedinger picture      xv 26—27
Schroedinger picture for canonical transformation      77—79
Schroedinger picture, Hamiltonian equation for      27
Schur lemma      202 216
Schwinger — Feynman variation principle      79—88
Schwinger — Feynman variation principle on quantized field with invariant action      104—105
Schwinger — Feynman variation principle with arbitrary variation      81—83
Schwinger — Feynman variation principle, canonical equation from      86
Schwinger — Feynman variation principle, definition of      79—80
Schwinger — Feynman variation principle, Hermitian action of      79
Schwinger's method of evaluating wave equation functions      170
Space symmetry      113—115 206—207 218—220
Space symmetry, behaviour of Dirac field under      242—243
Space-like surfaces      6—8
Space-like surfaces, commuting of variations on      83—84
Space-like surfaces, condition for equitemporal plane on      7
Space-like surfaces, effect on Lorentz transformation of      6
Space-like surfaces, functionals of      35—36
Space-like vector      45
Space-time points      37
Space-time points and evolution of field variables      51
Space-time points and variation of field variables      84—86
Space-time points, measurement of electric field at      270
Space-time translation operator      52 53 69—70
Spin      155—156
Spin 0 fields      159—184
Spin 0 fields, commutation rules for      182
Spin 0 fields, field equation of      183
Spin 0 fields, non-Hermitian      174—181
Spin 0 fields, quantization of Hermitian      171—174
Spin 0 fields, solution of wave equations of      160—170
Spin 0 fields, vacuum-expectation values of      183—184
Spin 0 fields, wave equation of      160
Spin field      144
Spin field, arbitrary      see "Arbitrary spin fields"
Spin field, commutation relations of Dirac matrices of      144
Spin field, summation over      231—233
Spin field, tensor components of wave function of      153—155
Spin of a field      110—111
Spinors, Dirac      226—228
Spinors, Majorana      230
State vector and parity of field      115
State vector for Hermitian scalar field      194
State vector in Heisenberg picture      43
State vector of linear space      35
State vector of non-zero spin field      113
State vector of zero spin field      112—113
State vector, calculation of observables by      44
State vector, effect of interacting fields on      159
State vector, evolution of      45—50
State vector, independence of norm of      45
State vector, operators of      46
State vector, operators of, properties of      47
Stueckelberg formulation      273—275
Summations over spins      231—233
T.C.P. theorem      212 247
Taylor's formula for functionals      35
Tensor products, formulae for      22
Tensor, classical energy-momentum      101—103
Tensor, classical energy-momentum, law of conservation of      102
Tensor, components of wave functions      153—154
Tensor, orbital angular momentum      102—103 107 200
Tensor, symmetrical energy-momentum      108
Tensor, total angular momentum      107 109
Time reversal      207—213
Time reversal and total charge of field      210—211
Time reversal by antilinear transformation      208
Time reversal of Dirac equation      218—219
Time reversal, commutation rules of      209—210
Total charge of field      115—121
Total charge of field and charge conjugation      121
Total charge of field and time reversal      210—211
Total charge of field of arbitrary spin field      204—206
Total charge of field, eigenvector of      120
Unitary operator and parity of fields      113—115
Unitary operator as charge parity operator      204
Unitary operator for definition of time reversal      212
Unitary operator for state vector      46
Unitary operator of quantized field      105
Unitary operator, generation of canonical transformation by      75
Unitary operator, properties of      47
Unitary operator, theorem for      49
Vacuum expectation values of field variables      172—174
Vacuum expectation values of field variables of Dirac field      244—245
Vacuum state of field observables      109
Vacuum state of field observables, fermion propagator of      245
Variation formulation      79—90
Variation formulation, commutation relations in      86—88
Variation formulation, local character of field equation by      88—90
Variation formulation, Peierls relation for      90
Variation formulation, Schwinger — Feynman variation principle of      79—88
Variation formulation, structure of Hamiltonian of      88—90
Vectors, bra      12
Vectors, difference between space-like and timelike      5
Vectors, ket      12
Vectors, Poynting      249
Vectors, wave propagation of      9
Wave equation of interacting fields      159
Wave equation of particles of spin 0      160
Wave equation of particles of spin 0, elementary solutions of      160—170
Wave mechanics of Proca — de Broglie field      275—278
Wave propagation vector      9
Wigner — Bargman classification of particles      130 135—139
Wigner's procedure for matrix representation      197
Wigner's suggestions on time reversal      208
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå