Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity
Papadimitriou C.H., Steiglitz K. — Combinatorial Optimization: Algorithms and Complexity



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Combinatorial Optimization: Algorithms and Complexity

Авторы: Papadimitriou C.H., Steiglitz K.

Аннотация:

This clearly written , mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.


Язык: en

Рубрика: Математика/

Серия: Сделано в холле

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 496

Добавлена в каталог: 09.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
NP-complete problem      2 342—401 353
NP-complete problem, strongly      378—81 430
NP-hard problem      397—98
Off-shore natural gas pipeline system      462—65
OPTIMIZATION 0—1 KNAPSACK      421
Optimization problem      1 3—6 343—47 472
Optimization version of a combinatorial optimization problem      345
OR      314
Orchard-Hayes, W.      103
Orden, A.      341
Orlova, G.I.      405
Out-of-kilter algorithm      153
Outdegree      21
Outer node      219 260
p-quantile      301
Padberg, M.W.      325
Papadimitriou, C.H.      155 192 246 270 325 382 405 406 485 486
Parsimonious transformation      402
Partition      375 397 431
Partition matroid      288
Path      21
Path, alternating      219 292
Path, augmenting (or augmentation)      114 121 219 291
Path, directed      21
Perfect (or complete) matching      219 267
Permutation schedule      445 470
Pidgin algol      24—25
Pivot      44
Pivoting rule, all-variable gradient      51
Pivoting rule, Bland's rule      53—55 85 90
Pivoting rule, greatest increment      50—51
Pivoting rule, nonbasic gradient      50—51
PLANAR CLIQUE      393 402
Planar graph      302
Polynomial-time algorithm      163—66 347
Polynomial-time approximation scheme (or PTAS)      419—27
Polynomial-time approximation scheme (or PTAS), fully      426 430
Polynomial-time transformation      151 352
Polynomialrtime reduction      351—53 395—97
Polytope (or convex polytope)      34—42 59—62 472
Positive-definitive matrix      174 379
Post's correspondence problem      185 187
Post, E.L.      190
Pratt, V.R.      306 404
Precedence relation      310 363
PRECISION      182—85 339
Prim, R.C.      305
Primal integer algorithm      339
Primal linear program      69
Primal linear program, restricted      105 106
Primal-dual algorithm      104—15 138 141 144—48 150 256
PRIMES      402
Principal of optimality      448
Probabilistic algorithm      401
Problem, combinatorial optimization      1 3—6 343—47 472
Problem, decidable      157
Problem, master      99
Problem, NP-complete      2 342—401 353 378—81 430
Problem, NP-hard      397—98
Problem, optimization      1 3—6 343—47 472
Problem, PSPACE-complete      400
Problem, recognition      347
Problem, undecidable      157
Processing time      310
Processor      243 310
Proper alternating sequence      294
PS PACE      399
Pseudonode      260
Pseudopolynomial algorithm      165 387—91 402
PSPACE-complete problem      400
PTAS      see “Polynomial-time approximation scheme”
Pull      207
push      207 209—10
Quadratic programming      379
Quandt, R.E.      51 66
QUEUE      196
R (real number line)      19
Rabin, M.O.      246
Rank of a matrix      288
Rank of a matroid      286 296
Rao, M.R.      381
Rate of growth      159
Recognition problem      347
Recognition version of a combinatorial optimization problem      345
Recursion      187
Recursive algorithm      187
Reduce      351
Reduction      148 225 244 266 298 see
Reduction (in local search)      471
Reduction, polynomial-time      351—53
Reid, J.K.      51 66
Reinversion      91
Reiter, S.      456
Reject      355
Relative cost      47
Relaxation      327
Resource      310
RESTRICTED HAMILTON CIRCUIT      477
Restricted primal (or RP)      105 106
Revised simplex algorithm      88—97
Rinooy Kan, A.H.G.      381
Rivest, R.L.      306
Robinson, A.      190
Rockafellar, R.T.      66 485
Rosenbaum, D.M.      484
Rosenkrantz, D.J.      432
Rota, G-C      306
Rotation      175
Rothfarb, B.      484
RP      see “Restricted primal”
s-t connectivity      215
Sadri, F.      82 85
Sahni, S.      432
Salkin, H.M.      341
Satisfiability      314 347 350 356—58 377 394 400
Savage, S.L.      485
Scaling method      153
Scarf, H.E.      341
Scheduling      310—12 363
Scheduling, flowshop      444—48 470
Scheduling, multiprocessor      363—66 393 402 431
Scheduling, two-processor      243
Schrage, L.      446 452
Schrijver, A.      192
Search, binary      171 172 346
Search, local      401 454—81
Search, of a digraph      197
Search, of a graph      194—200
Semiellipsoid      178
Sequence, alternating      292
Sequence, augmenting      293
Sequence, proper      294
Sethi, R.      445 453
SFTP      see “Sum-finishing-time problem”
Shamos, M.I.      306
Sherman, G.S.      456
Shiloach, Y.      217
Shor, N.Z.      191
Shortest-path problem (or SP)      75 109—13 303 439 451
Shrink a blossom      230
Simon, J.      404
Simonnard, M.      65
Simple network      213 225 458
Simplex algorithm      2 26—115 163 166—70 475
Simplex algorithm, dual      80—85
Simplex algorithm, primal-dual      104—15 138 141 144—48 150 256
Simplex algorithm, revised      88—97
Size of the input      159—62 171
Slack variable      29
Sleator, D.D.      217
Sorting      187—88
Source      23
Source row      329
sp      see “Shortest-path problem”
span      286
Spanning tree      5 22 272 439
Spanning tree, capacitated      152
Stage      206 224 276
Stearns, R.E.      432
Steiglitz, K.      484 485 486
Steinberg, D.      65 66
Stigler, G.J.      66
Stockmeyer, L.J.      486
Stoer, J.      18
Stone, R.E.      191
String (or sequence of symbols)      159 349
Strongly connected digraph      214
Strongly NP-complete problem      387—91 430
Subgraph Isomorphism      392
subproblem      98 434
Subset system      280 472
Subspace, affinc      34
Subspace, linear      34
Subtour      309 441
Sum-finishing-time problem (or SFTP)      444—45
Supporting hyperplane      36
Surplus variable      28
SURVIVABLE NETWORK DESIGN      392 456 483
Swap neighborhood      466—67
Sweeny, D.W.      452
Symmetric difference      220
Tableau      44—46 79—85
Tail-partition matroid      288
Talman, A.J J.      341
Tarjan, R.E.      216 217 246 305 306
Task      310
Terminal      23
Tf-TH HEAVIEST SUBSET      397 400
Thomason, A.G.      486
THREE PARTITION      390 403
Three-matroid intersection      300—301
Throughput      207
Tiling problem      186
Todd, M.J.      191
Tolstoi, A.N.      154
Tomlin, J.A.      155
Tompkins, C.B.      325
Totally unimodular (or TUM)      249 316—18
Toueg, S.      486
Tour      4
Tour, embedded      413
Tower of Hanoi      16 187
transform      352
Transformation      148 359 392
Transformation, affine      174
Transformation, polynomial-time      151 352
Transitive closure      403
TRANSITIVE REDUCTION BY ELIMINATION      404
Transversal matroid      303
Traveling salesman problem (or TSP)      3 4 7—10 157 283 303 308—10 344 349 371 379 384 427 439—42 450 455—56 469 472 477—81
Traveling salesman problem (or TSP), asymmetric      392
Traveling salesman problem (or TSP), Euclidean      379 411
Traveling salesman problem (or TSP), triangle-inequality      410—18
TREE      22
Tree algorithm      414
Tree, spanning      5 22 272 439
Treybig, L.B.      325
Triangle inequality      410
Triangle inequality TSP      410—18
Triangle operation      130
TRUE      314
Truth assignment      314
TSP      see “Traveling salesman problem”
TSP SUBOPTIMALITY      481
Tucker, A.W.      87 309 324
TUM      see “Totally unimodular”
Turing machine      157 347—48
Turing machine, nondeterministic      398
Turing, A.M.      157 190 355 382
Tutte matrix      243
Tutte, W.T.      246 306
Two-phase method      55—58
Two-processor scheduling      243
UGP      see “Uniform graph partitioning”
Ullman, J.D.      24 136 190 381 382
Undecidable problem      157
Undirected graph      20
Uniform graph partitioning (or UGP)      465 481
Uniform partition      465
Unimodular matrix      316
Unimodular matrix, totally      316
Unit capacity      212—14 225
Unit sphere      174
Valiant, L.G.      404 405
Value of a flow      23
van Emde Boas, P.      341
Van Sickle, L.      155
Variable, admissible      106 144 257
Variable, artificial      55 106
Variable, basic      29
Variable, Boolean      314
Variable, slack      29
Variable, surplus      28
Variable-depth local search      468
Vazirani, V.V.      246
Veinott, A.F.Jr.      324
Vertex      see “Node”
Vertex connectivity      457
Vertex of a polytope      36 39
von Neumann, J.      86 190
Voronoi polygon      see “Dirichlet cell”
Wagner, H.M.      155
Walk      21
Walk, directed      21
Walk, Eulerian      412
Walk, Hamilton      431
Wandering salesman problem      303
Warshall, S.M.      136
Weighted graph      22
Weighted matching problem      247—66 282
Weighted matroid intersection      298—99
Weiner, P.      456 484 485
while statement      25
Whitney, H.      306
Witzgall, C      18
Wolfe, P.      103 341
X-change      460
X-change neighborhood      460
X-change, favorable      460
Yannakakis, M.      246 270 405 432
Yao, A.C.      305
Yudin, D.B.      65 87 191
Z (set of integers)      19
Zadeh, N.      153 154 191 192
Zemlin, R.A.      342
ZOLP      see 0—1 “Linear program”
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте