Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dembo A., Zeitouni O. — Large deviations techniques and applications
Dembo A., Zeitouni O. — Large deviations techniques and applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Large deviations techniques and applications

Авторы: Dembo A., Zeitouni O.

Аннотация:

This book presents an introduction to the theory of large deviations. Large deviation estimates have proved to be the crucial tool required to handle many questions in statistics, engineering, statistial mechanics, and applied probability. The mathematics is rigorous and the applications come from a wide range of areas, including elecrical engineering and DNA sequences. The second edition includes new material on concentration inequalities and the metric and weak convergence approaches to large deviations. General statements and applications have been sharpened, new exercises added, and the bibliography updated. Amir Dembo is Associate Professor of Mathematics and Statistics at Stanford University, and Professor of Electrical Engineering at the Technion-Israel Institute of Technology. He currently serves on the editorial board of the Annals of Probability. Ofer Zeitouni is Professor of Electrical Engineering at the Technion-Israel Institute of Technology. He has served on the editorial board of the IEEE Transactions on Information Theory and currently serves on the editorial board of Stochastic Processes and Applications.


Язык: en

Рубрика: Технология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1993

Количество страниц: 346

Добавлена в каталог: 24.09.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Subdifferential      48
Sufficient statistics      81 287
Super multiplicative      248
Support      12 319
Supremum norm      152 161 166 237 259 315
test      76—80 81—85 98 281—287
Tight      237 319 see
Topological completely regular space      124 129
Topological dual      126 130 146 149 310
Topological Hausdorff space      102 124 307
Topological locally compact space      103
Topological locally convex space      106 126 134 148 228 237 240 310
Topological metric space      102 103 282 308
Topological normal space      308 315
Topological Polish space      91 105 146 227—228 234 237 243 246—247 259 274 278 288 291 311 317—320
Topological regular space      102 103 307
Topological separable space      113 138 309
Topological space      307
Topological vector space      102 130 145 310
topology      307
Total variation      314
Totally bounded      312
Tracking loop      196 213—223 225
Transition probability      247 249 264 268—271
Tychonoff's theorem      144 309
TYPE      12 13 26 58 68 82 84
Uniform Markov (U)      246—248 249—253 263 264 267 279
Uniformly continuous      275 320
Uniformly integrable      242 316
Upper bound      6 7 38 45 106 125 131—133 150
Upper semicontinuous      42 121 308
Varadhan      9 120—124 125 129 135 150
Variational distance (norm)      12 243
Viterbi      212
Weak convergence      150
Weak LDP      7 106—110 136 149 228—230 234 237
Weak topology      150 237 239 243 267 274 275 277 278 298 307 311 319
Weak* topology      135 142 311
Well-separating      see "Separating"
Wentzell      3 9 187—195 222
Wiener measure      235
Zabell      150 277
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте