Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bertsekas D.P., Shreve S.E. — Stochastic Optimal Control: The Discrete-Time Case
Bertsekas D.P., Shreve S.E. — Stochastic Optimal Control: The Discrete-Time Case



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Stochastic Optimal Control: The Discrete-Time Case

Авторы: Bertsekas D.P., Shreve S.E.

Аннотация:

Preface:

This monograph is the outgrowth of research carried out at the University of Illinois over a three-year period beginning in the latter half of 1974. The objective of the monograph is to provide a unifying and mathematically rigorous theory for a broad class of dynamic programming and discrete-time stochastic optimal control problems. It is divided into two parts, which can be read independently.

Part I provides an analysis of dynamic programming models in a unified framework applicable to deterministic optimal control, stochastic optimal control, minimax control, sequential games, and other areas. It resolves the structural questions associated with such problems, i.e., it provides results that draw their validity exclusively from the sequential nature of the problem. Such results hold for models where measurability of various objects is of no essential concern, for example, in deterministic problems and stochastic problems defined over a countable probability space. The starting point for the analysis is the mapping defining the dynamic programming algorithm. A single abstract problem is formulated in terms of this mapping and counterparts of nearly all results known for deterministic optimal control problems are derived. A new stochastic optimal control model based on outer integration is also introduced in this part. It is a broadly applicable model and requires no topological assumptions. We show that all the results of Part I hold for this model.

Part II resolves the measurability questions associated with stochastic optimal control problems with perfect and imperfect state information. These questions have been studied over the past fifteen years by several researchers in statistics and control theory. As we explain in Chapter 1, the approaches that have been used are either limited by restrictive assumptions such as compactness and continuity or else they are not sufficiently powerful to yield results that are as strong as their structural counterparts. These deficiencies can be traced to the fact that the class of policies considered is not sufficiently rich to ensure the existence of everywhere optimal or epsilon-optimal policies except under restrictive assumptions. In our work we have appropriately enlarged the space of admissible policies to include universally measurable policies. This guarantees the existence of epsilon-optimal policies and allows, for the first time, the development of a general and comprehensive theory which is as powerful as its deterministic counterpart.

We mention, however, that the class of universally measurable policies is not the smallest class of policies for which these results are valid. The smallest such class is the class of limit measurable policies discussed in Section 11.1. The sigma-algebra of limit measurable sets (or C-sets) is defined in a constructive manner involving transfinite induction that, from a set of theoretic point of view, is more satisfying than the definition of the universal sigma-algebra. We believe, however, that the majority of readers will find the universal sigma-algebra and the methods of proof associated with it more understandable, and so we devote the main body of Part II to models with universally measurable policies.

Parts I and II are related and complement each other. Part II makes extensive use of the results of Part I. However, the special forms in which these results are needed are also available in other sources (e.g., the textbook by Bertsekas [B4]). Each time we make use of such a result, we refer to both Part I and the Bertsekas textbook, so that Part II can be read independently of Part I. The developments in Part II show also that stochastic optimal control problems with measurability restrictions on the admissible policies can be embedded within the framework of Part I, thus demonstrating the broad scope of the formulation given there.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 333

Добавлена в каталог: 07.05.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Proposition 7.42 (Lusin's Theorem)      167
Proposition 7.43      169
Proposition 7.44      172
Proposition 7.45      175
Proposition 7.46      177
Proposition 7.47      179
Proposition 7.48      180
Proposition 7.49 (Jankov — von Neumann Theorem)      182
Proposition 7.5      109
Proposition 7.50      184
Proposition 7.6      112
Proposition 7.7      113
Proposition 7.8      114
Proposition 7.9      116
Proposition 8.1      192
Proposition 8.2      198
Proposition 8.3      200
Proposition 8.4      203
Proposition 8.5      207
Proposition 8.6      209
Proposition 8.7      211
Proposition 9.1      216
Proposition 9.10      226
Proposition 9.11      227
Proposition 9.12      227
Proposition 9.13      228
Proposition 9.14      231
Proposition 9.15      231
Proposition 9.16      232
Proposition 9.17      234
Proposition 9.18      236
Proposition 9.19      237
Proposition 9.2      219
Proposition 9.20      239
Proposition 9.21      241
Proposition 9.3      219
Proposition 9.4      220
Proposition 9.5      223
Proposition 9.6      224
Proposition 9.7      224
Proposition 9.8      225
Proposition 9.9      226
Proposition A.1      278
Proposition B.1      282
Proposition B.10      297
Proposition B.11      299
Proposition B.12      300
Proposition B.2      285
Proposition B.3      289
Proposition B.4      290
Proposition B.5      291
Proposition B.6      292
Proposition B.7      293
Proposition B.8      295
Proposition B.9      296
Proposition C.1      304
Proposition C.2      306
Proposition C.3      308
Proposition C.4      310
R-operator      21
Regular probability measure      122
Relative topology      104
Second countable space      106
Semi-Markov decision problems      34
Separable space      105
State space      2 26 188 216 243 245 248 251 271
State transition kernel      189 243 248 251
Statistic sufficient for control      250
Statistic sufficient for control, existence of      259ff
Stochastic kernel      134
Stochastic programming      11ff
Suslin scheme      157
Suslin scheme, nucleus of      157
Suslin scheme, regular      161
System function      189 216 243 245 271
Topologically complete space      107
Totally bounded space      112
Uniform decrease assumption      70
Uniform increase assumption      70
Universal $\sigma$-algebra      167
Universal function      290
Universal measurability of a function      171
Upper semicontinuous (K) function      310
Upper semicontinuous function      146
Upper semicontinuous model      210
Urysohn's lemma      105
Urysohn's theorem      106
Weak topology on space of probability measures      125
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте