Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Berger M., Cole M. (translator) — Geometry I (Universitext)
Berger M., Cole M. (translator) — Geometry I (Universitext)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Geometry I (Universitext)

Авторы: Berger M., Cole M. (translator)

Аннотация:

This is the first part of the 2-volume textbook Geometry which provides a very readable and lively presentation of large parts of geometry in the classical sense.
An attractive characteristic of the book is that it appeals systematically to the reader's intuition and vision, and illustrates the mathematical text with many figures. For each topic the author presents a theorem that is esthetically pleasing and easily stated - although the proof of the same theorem may be quite hard and concealed. Many open problems and references to modern literature are given. Yet another strong trait of the book is that it provides a comprehensive and unified reference source for the field of geometry in the full breadth of its subfields and ramifications.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Corrected Fourth Printing

Год издания: 2009

Количество страниц: 427

Добавлена в каталог: 14.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Supporting hyperplane      12.1.9 11.5.1
Surface of constant negative curvature      19.6.12
Swiss Federal Topographical Service      18.1.8.3
Sylow subgroups      1.6.7.3
Sylvester’s law of inertia      13.4.7
Sylvester’s theorem      9.14.25
Symbol      8.8.5 12.6.1 12.6.7.4 20.1.8
Symmetric group      0.2 1.2.2 1.8.4 6.3.2 8.10.2 12.5.5.6 12.6.8
Symmetries of quadrics      15.6.8
Symmetry      8.2.9
Symmetry groups      1.8.3.4 1.8.7.2
Symplectic geometry      II.87
System of linear equations      2.2.3
Tangent bundle to an elliptic space      19.1.1.4
Tangent bundle to hyperbolic space      19.2.7
Tangent conics      16.4.5 16.4.10.2
Tangent hyperplane      14.1.8.5
Tangent hyperplane to a sphere      10.7.4 18.1.2.4
Tangent of the half-arc      8.7.7.7
Tangent to a quadric      14.1.8.5
Tangent vector      10.7.4 18.1.2.4 19.1.1.4
Tangential equation      14.6.1
Tangential pencil      14.6.2 16.5.6.1 17.6
Tangential quadric      14.6.2
Tensor algebra      8.11.2
Tetracyclic coordinates      20.7.1
tetrahedron      1.8.3.4 2.4.7 6.8.21 9.12.4.4 10.6 10.13.10
Thales’ Theorem      6.5.5 2.5.1 4.4.2
Third-order formulas      18.6.13.8
Thorn, Rene      12.6.8
Three levels, formula of      12.12.20.7
Three-cusped hypocycloid      10.4.5.5 10.11.3
Three-sphere      1.2.9 4.3.6.2 8.9.1 18.1.3.3 18.8
Tile, standard      1.7.2
Tiling      1.7.2 1.7.3 1.7.4 1.8 1.9.6 12.6.10.4
Timaeus      12.5.5.7
Toledo, Spajn      1.7.1
Topological closure      5.3.3
Topological vector spaces      12.6.8
Topology of convex sets      11.3
Topology of GP(E)      4.5.20
Topology of projective spaces      4.6.15 4.3
Topology of quadrics      14.3 15.4
Topology of spheres      18.2
Torsion      4.9.12 10.8.5.5
Torsor      II.87 14.8.12.5
Torus      1.7.7.4 18.8.6 18.11.20 10.12.1 10.13.22
Torus of revolution      18.9.2
Torus, flat      18.11.17
Total mean curvature      12.10.9.1
Tower of Babel      4.7.6
Trajectory of a vector field      8.1.2.1
Transition map      4.9.4
Transitive action      1.4.1
translate      2.2.3
Translation      6.6.2 2.1.2 1.2.6 1.4.2 3.1.2.1
TRANSPOSE      0.2 8.1.8.6
Transverse axis      17.2.1.4
Transverse Mercator projection      18.1.5.3 18.1.8.3
Triality      8.10.2
triangle      10.1 10.1.1 2.4.7 3.4.2 9.12.4.4
Triangle in elliptic spaces      19.1.8.1
Triangle inequality      9.1.1.1 18.4 18.6.10 18.11.13 19.1.2.1 19.3.2
Triangle, hyperbolic      19.3.4
Triangle, polar to one another      18.6.7
Triangle, spherical      12.5.5.2 18.2.8.4 18.6
Triangular billiards      9.4
Trigonometry      8.7.7.7 8.7.8 8.12.8
Two-sheet hyperboloid      15.8.8.8
Two-sphere      1.8 4.3.6 8.9.1 18.1.3.2
Umbilical locus      9.5.5.1
Umbilical points      9.5.4.21
Underlying vector space      2.1.1
Unicursal curves      16.2.10
Unimodular group      2.7.6
Unit sphere      8.2.7
Unitary basis      11.8.9.2
Universal space of an affine space      3 7.6.1
Upper half plane      6.8.9
Upper Minkowski area      12.10.9.8
Valency      1.9.18
van Kampen theorem      18.2.4.2
Vector field      0.2 8.1.1 18.2.5.3
Vector product      8.9.1
Vector spaces, orientation of      2.7.2.2
Vectorialization      2.1.9
Vertex of a conic      17.1.8
Vertex of a convex set      11.6.1
Vertex of a spherical polygon      18.6.6 18.7.8
Vertex of a triangle      10.1.2
Vertical billiard      17.9.2
Villarceau circle      18.9.3 18.11.20 10.12.1
Vision      I.ix 4.7.3
Viviani’s window      12.12.20.6
Voderberg      1.7.2
Volume      9.12.4.1 9.12.5 9.12.7
Volume and Steiner symmetrization      9.13.4
Volume of a spherical simplex      18.3.8.6
Volume of balls      9.12.4.6
Volume of compact convex sets      12.9.3
Volume of ellipsoid      11.8.9.1
Volume of parallelepiped      9.7.3.1
Volume of polytopes      12.2
Volume of tetrahedron      9.12.4.4 10.13.10
Volumes on the sphere      18.3.8.1
Von Staudt      6.4.10 7.0.3
Wallace line      10.9.7.1
Wankel engine      9.14.34.6 12.10.5
Weakly ergodic      9.4.4
Weakly parallel affine subspaces      2.4.9.1
Web      5.5.8 5.5.9
Weyl group      12.6.9
width      11.5.6.3 11.5.9.5 11.9.12 12.10.5
Wild vector fields      3.1.2
Wind      18.2.5.4
Wire, piece of      2.7.5.6
Witt’s Theorem      13.7.1 13.7.8
Xochimilco, D.F., Mexico      II.155
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте