Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Betten J. — Creep Mechanics
Betten J. — Creep Mechanics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Creep Mechanics

Автор: Betten J.

Аннотация:

Provides a short survey of recent advances in the mathematical modelling of the mechanical behavior of anisotropic solids under creep conditions, including principles, methods, and applications of tensor functions. Some examples for practical use are discussed, as well as experiments by the author to test the validity of the modelling. The monograph offers an overview of other experimental investigations in creep mechanics. Rules for specifying irreducible sets of tensor invariants, scalar coefficients in constitutive and evolutional equations, and tensorial interpolation methods are also explained. The second edition includes a CD-ROM containing the examples and algorithms in more detail and the appendant figures in color. The text has been re-examined and improved throughout.


Язык: en

Рубрика: Механика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2 edition

Год издания: 2005

Количество страниц: 353

Добавлена в каталог: 12.04.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Loss factor      226
Loss modulus      226
LUDWlK-deformations      81
Mapped stress tensor      55 252
Marquart — Levenberg algorithm      207 217 242
Material contravariant metric tensor      81
Material coordinates      33 78
Material damping      225
Material deformation gradient      34 79
Material description      33 178
Material displacement gradient      34
Material objectivity      173 183 194
Material tensor of rank four      110
Material time derivative      33 39
Material time derivative of the Euler strain tensor      177
Material time derivative of the Lagrange strain tensor      175
Matrix notation      9
Maxwell distribution function      202 204 208
Maxwell fluid      189 193 301
Maxwell model      181 217 228—229
Measure of strain      36
Mechanical damping      226
Memory fluid      181
Mesocracks      254
Metallographical analysis      248
Metric tensor      21 79
Micro-cracks      247
Microscopic mechanisms      247
Microstructural creep      255
Minimum polynomial      103 105
Minimum polynomial representation      101 241
Mixed metric tensor      20
Mixed tensor components      29
MlSES solid      240
Model of Monkman and Grant      71
Modified (continuous) Heaviside function      278
Modified delta function      275
Modified Dirac delta functions      280
Modified flow rule      108—110
Modified standard solid model      221
Monkman — Grant model      71
Monkman — Grant product      72
Multi-axial creep behavior      188
Multiaxial      151
Multiaxial state of stress      131
Navier — Stokes equations      169—170
Net-stress concept      71
Net-stress tensor      72—73 141 147 149
Newton fluid      164 166 169 240
Nominal (engineering) stress      246
Non — NEWTONian fluids      163 168 171 173 181 185
Nonlinear creep behavior      215
Nonlinear dashpot      215
Nonlinear effects      224
Nonlinear viscous fluids      163 166
Nonpolar case      47
Normal stress effects      186
Normality rule      104
Normalized creep spectra      198
Normalized relaxation spectra      219
Norton — Bailey creep law      53 56 70—71 154 157
Objective tensor      176
Oldroyd time derivative      177
Oldroyd time derivative of the Euler strain tensor      177
Operational calculus      281
Orthogonal tensor      176
Orthonormal basis      10 16
Orthotropic behavior      106
Orthotropic material      59
Parabolic exponential function      207
Partial differential equation      315
Perforated materials      107
Perforation tensor      107
Phenomenological      247
Physical components      26
Piola — Kirchhoff tensors      47—48 177—178
Plastic potential      53 55—56 82 84
Plastic viscosity      238
POISEU ILL E-flow      185
Poisson distribution      199—201 221
Polar decomposition theorem      35
Polymer melt      229
Polymer solution      229
Poynting effect      62—63
Poynting — Thomson model      218 221
Primary stage      255
Principal directions      44
Principal invariants      119
Principal minors      15
Principal planes      44
Principal stresses      44
Principal values      152
Principle of duality      79
Principle of material frame-indifference      50 164 171 183
Principle of material objectivity      50 171
Principle of maximum dissipation rate      56
Projection concept      157
Pseudo-net-stress tensor      127 129—130 143 149
Ramberg — Osgood relation      262—263
Rate of dissipation      156
Rate of dissipation of creep energy      57 113 119
Rate-of-deformation tensor      39 48 74 101 171—172
Reciprocal basis      19
Reference configuration      32
Reference time      32
Reiner — Rivlin fluids      173
Relative deformation gradient      183—184
Relative right Cauchy — Green tensor      183
Relaxation      188
Relaxation function      189—191 193 217—219 221—222 227 232—235 302
Relaxation integral      190
Relaxation modulus      219
Relaxation time      181 217—219 229
Representations for tensor functions      150
Residual stresses      89
Resonance      226
Retardation time      195—197 229
Rheological models      187
Right Cauchy — Green tensor      36 81 184 194
Right stretch tensor      81
Rigid rotation      35
Rigid-body motion      36
Rimrott’s solution      92
Romberg’s integration method      95
Rule of lowering and raising the indices      21 23
Second law of thermodynamics      167
Second Piola — Kirchhoff tensor      47—48 177
Second-order effect      61—62 64 67—69 107—108 241-242
Second-rank tensor      13 131
Secondary creep      255
Secondary stage      157
Shear effect      166
Shear flow      181
Shear viscosity      164 167 181 194 240
Shearing flow      164
Shift rule      285
Similarity rule      285
Simplified representations      127
Simplified theory      252—253
Simulaaneous invariants      111 117
Small-strain theory      38
Solid part      239
Spatial coordinates      33 78
Spatial covariant metric tensor      82
Spatial deformation gradient      34 79
Spatial description      33 37 178
Spatial displacement gradient      34
Spherical coordinates      30
Spherical tensor      14 140
Spring-dashpot models      194
Square wave      272
Stabilized glass      222
Standard form      106
Standard solid model      196—197 216 231
Steady creep      51
Stokes condition      166 170
Stokes fluid      166
Storage compliance      226
Storage modulus      226
Strain equivalence hypothesis      149
Strain history      181
Strain-hardening-theory      52
Strain-to-rupture      72
Stress deviator      154 166
Stress relaxation      189—190 215 221
Stress tensor      2 40 42
Stress vector      40—41
Structural relaxation      221
Substantial derivative      33
Substitution rule      169
Substitution tensor      10
Sufficient and necessary conditions of compatibility      110
Summation convention      10
Superposition principle      189
Sylvester theorem      152
Symbolic notation      9
Tautochrone      309
Tensor analysis      23
Tensor function theory      2 101
Tensor functions      49
Tensor generators      73 104—105 111 126—128
Tensor of continuity      118 134—135
Tensor-valued functional      182 185
Tensor-valued functions      72
Tensorial constitutive equations      151
Tensorial generalization      71
Tensorial interpolation method      157 244
Tensorial nature      148
Tensorial nonlinear constitutive equation      52
Tensorial nonlinearities      2 53 244
Tensors of continuity      72
Tertiary creep      69 72 255
Theorem of conjugate shear stresses      44
Theory of viscoplasticity      237
Thermodynamic pressure      166
Thin-walled shells      52
Thin-walled tube      65—66 85 253
Time transform      316
Time-dependence      246
Time-dependent measurement      246
Time-hardening      52
Traceless tensor      14 116
Traction vector      41
Transformable functions      284
Transformed net-stress tensor      142
Transient creep      51—52
Transvections      124 126
Transverse contraction ratio      167 224
Transversely isotropic      74 106 113
Trouton number      168
True stress      246
Two-sided Laplace transformation      281
Unit impulse function      274
Unit step function      271 273
Vector functions      49
Velocity gradient tensor      172
Viaoplastic model      238
Vibro creep      154
Viscoelastic      187
Viscometric flows      185
Viscometric functions      185
Viscoplastic constitutive equation      242
Viscoplastic materials      237
Viscosity tensor      163
Viscous fluids      170 187
Viscous part      239
Viscous stress      163
Viscous stress tensor      163 181
Void nucleation      247
Volterra integral equation      300 306—308
Volume change      38 166
Volume elasticity modulus      165 168
Volume viscosity      165—168
Vorticity tensor      171 173
Weight function      181 276
Weighted-residual method      276
Weissenberg effect      186
Yield condition      237
Yield function      239 241—242
Yield strength in pure shear      240
Young’s modulus      195
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте