Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hilborn R.C. — Chaos and nonlinear dynamics
Hilborn R.C. — Chaos and nonlinear dynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Chaos and nonlinear dynamics

Àâòîð: Hilborn R.C.

Àííîòàöèÿ:

This is the only book that introduces the full range of activity in the rapidly growing field of nonlinear dynamics to an audience of students, scientists, and engineers with no in-depth experience in the area. The text uses a step-by-step explanation of dynamics and geometry in state space as a foundation for understanding nonlinear dynamics. It goes on to provide a thorough treatment of such key topics as differential equation models and iterated map models (including a derivation of the famous Feigenbaum numbers), the surprising role of number theory in dynamics, and an introduction to Hamiltonian dynamics. This is the only book written at this introductory level to include the increasingly important field of pattern formation, along with a survey of the controversial questions of quantum chaos. Important analytical tools, such as Lyapunov exponents, Kolmogorov entropies, and fractal dimensions, are treated in detail. With over 200 figures and diagrams, and both analytic and computer exercises following every chapter, the book is ideally suited for use as a text or for self-instruction. An extensive collection of annotated references brings the reader into contact with the literature in nonlinear dynamics, which the reader will be prepared to tackle after completing the book.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Íåëèíåéíàÿ äèíàìèêà, Õàîñ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 2000

Êîëè÷åñòâî ñòðàíèö: 650

Äîáàâëåíà â êàòàëîã: 10.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Lyapunov dimension      383
Lyapunov exponent      84 120 171—173 323—327 382—383 411 437
Lyapunov exponent, average      171—173 324
Lyapunov exponent, Bernoulli shift map      192 334—335
Lyapunov exponent, computation      172 323—327
Lyapunov exponent, derivative method      172
Lyapunov exponent, Kaplan — Yorke conjecture      382
Lyapunov exponent, local      84
Lyapunov exponent, logistic map      328 334—335
Lyapunov exponent, scaling behavior      327—330
Lyapunov exponent, sine-circle map      239
Lyapunov exponent, spectrum of      150—152 382
Lyapunov exponent, tent map      186
Lyapunov multiplier      see "Characteristic multiplier"
Mandelbrot set      353
Manifolds, center      543
Manifolds, stable      90
Manifolds, unstable      90
Maps, Arnold cat map      308—309 499
Maps, Bernoulli shift      190—192
Maps, Chirikov      304—307
Maps, circle      219—227
Maps, dissipative standard      309—311
Maps, Gaussian      192—197
Maps, Henon      198
Maps, horseshoe      199—204 242—246
Maps, logistic      see "Logistic map"
Maps, Moser twist      304
Maps, piece-wise linear      185—187
Maps, quadratic      171
Maps, sine      50
Maps, sine-circle      219—227
Maps, standard      304—307
Maps, tent      185—187 404—407
Maps, tilted tent      404—407
Maximum norm      379
Metamorphosis      260
Misiurewicz point      181
Mixing      436—438
Mode locking      see "Frequency-locking"
Modeling      58—61 244
Monodromy matrix      295
Moser twist map      304
Multifractals      393—403
Multipliers      see "Characteristic multipliers"
Natural probability measure      332
Navier — Stokes equation      458 549—551
Neural networks      448—449
No-Intersection theorem      77
Node      80—81 126—127
Noise and correlation dimension      360—361
Noise, 1/f      256 479
Noise, crisis      250 256 267
Noise, scaling      586—588
Nonautonomous system      75—76
Nonextensive thermodynamics      421
Nonintegrable system      273 288—292
Nonlinear definition      4—6
Nonlinear system, defined      4—6
Nonstationary systems      421—422
Normal forms      110—111 543—545
Number theory      189 191 227—234
On-off intermittency      260
One-dimensional maps      see "Maps"
Orbit      20
Order parameter      328
Oscillator, Duffing      71 579—583
Oscillator, harmonic      72 104 282—284
Oscillator, relaxation      254 593 603
Oscillator, Van der Pol      124 244 589—597
Out-set      91
Partial differential equations      461—465
Particle accelerator      312
Partition function      395 398 415—416 419
Pathlines      437—440
Pattern formation      433—435 468—471
Pattern formation, two-dimensional      468—471
Pattern selection      470
Pendulum      41 152—153 161—163 284—287
Period-bubbling      195
Period-doubling      11—14 47—50
Period-doubling for Hamiltonian systems      295—296
Period-doubling, diode circuit      11—13
Period-doubling, intermittency      259
Period-doubling, logistic map      22—24
Period-doubling, Lorenz model      35—36
Period-doubling, route to chaos      48
Period-doubling, scaling laws      22—24 183—185 569—579
Period-three crisis      264—265
Period-three implies chaos      179
Periodic orbit      see also "Limit cycle"
Periodic orbit, analysis      413—415 505—506
Periodic windows      14 16 25 66 577
Pesin identity      339
Phase portrait      73—74
Phase space      276 (see also "State space")
Phase-locking      see "Frequency-locking"
Piece-wise linear      185—187 510—512
Pitchfork bifurcation      see "Period-doubling"
Planck's constant      491
Poincare Index Theorem      102
Poincare map      103—105 158—163
Poincare plane (section)      102—106 128—130 158—163
Poincare plane (section), defined      102
Poincare — Bendixson theorem      101
Poincare — Birkhoff theorem      292—293
Poincare, H.      44 62 71
Pointwise dimension      359
Poisson bracket      278 281
Poisson distribution      503
Pommeau — Manneville route      see "Intermittency"
Population growth model      17—18
Power spectrum      538—539 584—586
Prandtl number      29 552
Prediction      37—39 516—517
Prime period      169
probability      38
Pulse-duration-bandwidth product      539
q-calculus, analysis      420
Quadratic map      171 261 267
Quantum chaos      498—502
quantum mechanics      39 490—508
Quasi-periodic      122 134—136
Quasi-periodicity      210—216
Quasi-periodicity in the circle map      219—227
Quasi-periodicity, definition      134—136
Quasi-periodicity, route to chaos      122 134—136
Random fractal      347
Randomness      3 6 7 39 508—510
Rational number      188 211
Rational ratio of frequencies      214
Rayleigh number      29 35 549 552
Rayleigh — Benard convection      27—28 241
Reaction-diffusion systems      460—467
Reconstruction space      see "Embedding space"
Relaxation oscillations      245 593 603
Renormalization, circle map      235—236
Renormalization, Feigenbaum numbers      569—570
Renormalization, intermittency      257—258
Renormalization, period-doubling accumulation      569—570
Repellor      80—81 126—127
Repellor-node bifurcation      108—110
Resonance overlap      292
Resonances      292 306—307
Riddled basins of attraction      38 79 354
Roessler model      156
Rotation number      219
Routes to chaos      39 117 121—122
Routes to chaos, homoclinic intersections      140—141
Routes to chaos, intermittency      see "Intermittency"
Routes to chaos, quasi-periodicity      see "Quasi-Periodicity"
Ruelle limit on dimensions      359 363
Ruelle — Takens route      see "Quasi-Periodicity"
Saddle cycle      132
Saddle point      80—83 89—91 126—128
Saddle-node bifurcation      109—111
Sarkovskii theorem      178—179
Scaling behavior, correlation sum      356
Scaling behavior, fractals      343
Scaling behavior, intermittency      257—258
Scaling behavior, Lyapunov exponents      327—330
Scaling behavior, period-doubling      55—57
Scaling behavior, quasi-periodicity      234—239
Scaling region      358 380—381
Scattering, chaotic      479
Schroedinger equation      494—496
Schwarzian derivative      177—178
Second iterate      167
Self-affine      347
Self-organized criticality      477—479
Self-similar      57 347
Self-similarity      56—57 347
Semi-classical      505—506
Sensitive dependence on initial conditions      see "Divergence of nearby trajectories"
Separatrix      79 287
Shadowing      62—64
Shift map      188—192
Sil'nikov chaos      146
Silver mean      234 241
Similarity dimension      see "Dimensions similarity"
Sinai billiards      311
Sine map      48 178
Sine-circle map      219—227
Singer's theorem      177—178
Singular diffusion      478
Singular point      see "Fixed point"
Sink      see "Node"
Smale horseshoe map      146—147 199—204
Smale — Birkhoff theorem      147
Soliton      479
Source      see "Repellor"
Spatial modes      461 463—465
Spiral node      95—96 145
Spiral repellor      95—96 145
Stable limit cycle      132—133
Stable manifold      90 139—142 440
Standard map      303—307
State space      31 71
State space, one-dimensional      79—83
State space, three-dimensional      118—120 123—128
State space, two-dimensional      87—96
Statistical mechanical formulation      415—420
Stochastic layer (web)      300 313
Stochastic resonance      514
Strange Attractor      119
Strange attractor, definition      342
Streaklines      438 440
Streamfunction      437—438 553—555
Streamlines      437
Stretching and folding      436 438 440
Stroboscopic portrait      see "Poincare section"
Structural partition function      419
Structural stability      81—82
Subcritical and supercritical bifurcations      544
Subharmonics      584—586
Supercycles      49 174—175
Surrogate data      367 389
Suspended state space      109
Symbolic dynamics      174 191
Symplectic structure      275
Synchronizing chaos      516
Tangent bifurcation      109 254—256 259
Tangles      see "Homoclinic" and "Heteroclinic"
Taylor series expansion      83—84 92 149 165—166
Tent map      see "Maps"
Thermodynamic formalism      415—420
Three-frequency quasiperiodicity      215
Tilted tent map      404—407
Time delay      383
Time lag      379 382—386
Time series      41 43 320—323
Time translation symmetry      28 35
Time-delay differential equations      512—513
Time-evolution operator      498
Topological dimension      354
Topological entropy      406 409 414
Torus      135—136 213—215 287—289 291—293
Trace      98
Trajectory      see "Orbit"
Transient chaos      see "Chaotic transient"
Transport models      450—460
Transverse intersection      128
Turbulence      44 479
Turing structures      460
Twist map      304
Two-dimensional maps      198 199—204 308—309
U-sequence      173—176
Unimodal maps, defined      173
Unit circle      134
Universality      47—49 53 58—61 183—185 234—239
Universality, classes      578
Universality, Lyapunov exponent scaling      327—330
Universality, noise scaling      586—588
Universality, period-doubling      47—49
Universality, power spectrum      584—586
Unstable manifold      90 139—142 543
Unstable periodic orbits      413—415
van der Pol oscillator      124 244 589—596
viscosity      458—460
Viscous fingering      475—476
Wave function      494—496 504—506
Wavelet      420
Wavevector      540
Weighted Cantor set      398—402
Wigner distribution      499
Wigner energy level distribution      503
Winding number      219—223 226—227 234—236
Windows (periodic)      see "Periodic windows"
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå