Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hale J.K., Kocak H. — Dynamics and Bifurcations
Hale J.K., Kocak H. — Dynamics and Bifurcations



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Dynamics and Bifurcations

Авторы: Hale J.K., Kocak H.

Аннотация:

This comprehensive textbook is designed to take undergraduate and beginning graduate students of mathematics, science, and engineering from the rudimentary beginnings to the exciting frontiers of dynamical systems and their applications. It is a masterful exposition of the foundations of ordinary differential and difference equations from the contemporary viewpoint of dynamical systems and bifurcations. In both conception and execution, the authors implemented a fresh approach to mathematical narration. Fundamental ideas are explained in simple settings, the ramifications of theorems are explored for specific equations, and above all, the subject is related in the guise of a mathematical epic. With its insightful and engaging style, as well as its numerous computer-drawn illustrations of notable equations of theoretical and practical importance, this unique book will simply captivate the attention of students and instructors alike. 345 illustrations.


Язык: en

Рубрика: Физика/Динамические системы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1991

Количество страниц: 582

Добавлена в каталог: 10.09.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Henon — Heiles Hamiltonian      531 533 534 534r
Henon — Heiles Hamiltonian, generalized      534
hessian      278 433 542
Heteroclinic orbit      184 200 392 435 436
Heteroclinic orbit breaking      292 303 304 428 430 431 437
Hilbert’s sixteenth problem      365 385 388r
Hill’s equation      264r
Homeomorphism      62 63 64 237
Homeomorphism of linear systems      245
Homoclinic bifurcation      210 385 386 388r 401 402 407 408
Homoclinic orbit      184 202 210 212 213 392 416 417 425—430 439 522r
Homoclinic orbit as limit set      366 368
Homoclinic orbit breaking      210 213 292
Homoclinic orbit in three-space      517 518
Homoclinic orbit, elementary      398 399 401
Homoclinic orbit, period of      214
Homoclinic point      458 493r
Homoclinic point in forced damped Duffing      506
Homoclinic point tangency      506 509r
Homoclinic point, transversal      458 459 502 504 509r
Hopf bifurcation theorem      see “Poincare — Andronov — Hopf”
Hopf map      534r
Horseshoe      509r
Hydroplane      40
Hyperbolic equilibrium point      19 20 26 43 301 391
Hyperbolic equilibrium point, saddle      239
Hyperbolic equilibrium point, sink      239
Hyperbolic equilibrium point, source      239
Hyperbolic fixed point      76 82 83 454
Hyperbolic linear map      445—449 451
Hyperbolic linear systems      237 238
Hyperbolic linear systems, genericity of      248
Hyperbolic periodic orbit      377 392
Hyperbolic periodic solution      131
Hyperbolic Umbilic      439
Hyperbolicity and finiteness      382
Hysteresis      30 31 32 38 58 59
Hysteresis loop      32
Implicit function theorem      41 42 43 47 80 344 541
Independent variable      4
Index theory, Conley, homotopy      305r
Indirect control      287
Inertial manifold      332r
Infinite dimensional dynamical system      538
Initial-value problem      4 175
Instability from Cetaev’s theorem      284
Instability from linearization      272 274
Integrable Hamiltonian      523—530 525 527 534r
Intermediate-value theorem      80 539
Invariance principle      287—291 288 305r 395 434
Invariant closed curve      473 475 478 481 482 493r
Invariant closed curve, disintegration of      479 489 490
Invariant cylinder      498 499
Invariant manifold      see “Center manifold” “Stable
Invariant set      287 305r
Invariant set for maps      445
Invariant set, negatively      287
Invariant set, positively      287
Invariant torus bifurcation      514 516 522r
Invariant torus Hamiltonian      528
Invariant torus, disintegration of      532
Inverse function theorem      541
Irrational flow on torus      154
Islands      489
Isolating block      305r
Jacobian matrix      267 454
Jordan curve theorem      366 376 387r
Jordan normal form      223 228 231 263r
Jordan normal form and linear equivalence      237
Jordan normal form and maps      445
Kam theorem      494r (see also “Twist theorem”)
Kepler motion      424
kinetic energy      414
Kirchkoff’s law      173
Lagrange libration point      531
Lagrange multiplier      526
Level set      195 278 414 524—531
Level set crossing      280
Liapunov exponents      537
Liapunov function      277—280 281 305r
Liapunov function for maps      462
Liapunov function, converse theorems for      283 305r
Liapunov function, strict      281
Liapunov — Schmidt method      332r 362r
Liapunov’s thesis      313
Lienard’s equation      173
Limit cycle      181 193 366 384 385 386 387r 408 498
Limit cycle and Euler      467
Limit cycle in three-space      513 516
linear combination      218
Linear gradient system      438
Linear harmonic oscillator      171 177 179 182 184 195 196
Linear harmonic oscillator and numerics      183 184 463 464 467
Linear harmonic oscillator, forced      503
Linear harmonic oscillator, pair of      526 527 530 534r
Linear independence      219
Linear map      73 74 445 445—453
Linear map, hyperbolic      445—449 451
Linear map, nonhyperbolic      448 453
Linear map, topological classification of      454r
Linear periodic equation      123 256—263
Linear system      218 218—255
Linear system and Euler’s algorithm      183 463
Linear system with one-periodic coefficients      256—263
Linear system, bifurcations of      247—253
Linear system, canonical      223 228—236
Linear system, hyperbolic      237—238 240
Linear system, nonhomogeneous      253—254
Linear system, nonhyperbolic      239
Linear system, stiff      236
Linear system, topological classification of      237—247
Linear variational equation      19 130 267
Linearization      19 265—277 267 301
Linearization at a fixed point      73 454 460
Linearization of a periodic orbit      381
Linearization of pendulum      271 275
Linearization, asymptotic stability from      266—272 269 271
Linearization, instability from      272—275 273 275
Linearization, when insufficient      275
Linearly equivalent      237 238
Liouville’s formula      256
Lissajous figure      529
Local transversal section      375 376 382 500 512 513
Logistic differential equation      68 69
Logistic differential equation and Euler      68
Logistic differential equation, generalized      128
Logistic differential equation, pair of      192
Logistic differential equation, periodic      128
Logistic map      92 92—104 100
Logistic map and Henon      461 465
Logistic map, bifurcation diagram of      100
Logistic map, chaos in      99
Logistic map, period-doubling in      95 97 98 99 101
Logistic map, strong resonances of      483
Lorenz equations      519 520 521 522r
Lozi map      461
Lyapunov      see “Liapunov”
MAP      67—103 72 443—495
Map, monotone      81 103r
Mathieu’s equation      259 263 264r 492
Mathieu’s equation, characteristic multipliers of      260
Mathieu’s equation, zones of stability of      261 262
Matrix exponential      220 (see also “Principal matrix solution”)
Matrix exponential of commuting matrices      223 226
Matrix solution      219
Maximal interval of existence      6 7 109 110 542
Mean-value theorem      20 539
Measure zero      525
Mechanics      215r 534r
Membrane      435 436 439
Metric for bi-infinite sequences      504
Mixed difference algorithm      468 471
MOD      149
Modulus      451
Momentum variable      524
Monotone map      81
Morse function      278 440r
Morse lemma      542
Negative definite function      278
Negative orbit      9 10 11
Negative orbit of maps      444
Nerve axon equation      522r
Neutral damping      424
Newton’s law      170
Newton’s method      71 75 76 104r
Node      188
Nonautonomous      107—144 108 111 256—263 497—510
Nondegenerate critical point      415 433 438
Nonhomogeneous linear system      253
Nonhyperbolic equilibrium      308
Nonhyperbolic equilibrium and computing      311
Nonhyperbolic fixed point      76 77 78 79 84
Nonhyperbolic linear map      448 453
Nonhyperbolic periodic orbit      381
Nonhyperbolic periodic solution      137
Nonintegrable Hamiltonian      531 533
Nonperiodic orbit      99 460 479 503 520
Nonresonance condition      474 480 486
Norm      175 215r 390 410r
Norm equivalence      175 176
Norm, Euclidean      175 176
Norm, sup      175 176
Normal form theory      146r 411r
Numerical analysis and dynamics      493r
O, big and small      539
Odd symmetry      408
Ohm’s Law      172
Omega-limit point      183
Omega-limit point of map      445
Omega-limit set      14 183 291 366 193
Omega-limit set and center manifold      327
Omega-limit set of a set      394
Omega-limit set of gradient system      434
Omega-limit set of map      445
Omega-limit set, connectedness of      288
Omega-limit setm homoclinic loop as      368
One-parameter bifurcations      see “Codimension-one bifurcations”
One-periodic equation      113 113—146 132r
One-periodic equation on cylinder      118—121
One-periodic equation, bifurcations of      133—146
One-periodic equation, hyperbolic solution of      127 131
One-periodic equation, limit sets of      116
One-periodic equation, linear      123 256—264
One-periodic equation, nonhyperbolic solution of      135—140 137
One-periodic equation, Poincare map of      116 119 121 134
One-periodic equation, saddle-node bifurcation in      145
One-periodic equation, translation invariance of      114
Orbit      9 10 11 177 178
Orbit of maps      444
Orbit of nonautonomous equation      108
Orbit structure      27 62
Orbit, negative      9 10 11 178
Orbit, positive      9 10 11 178
Orbitally asymptotically stable      341
Orbitally stable      341
Orbitally unstable      341
Ordinary point      185 187
Organizing center      537
Parabolic      485
Parallel flow on torus      150 151 500 528
Pendulum, planar      170 174 180 195 199 201 281
Pendulum, planar, damped      269 271 273 275
Pendulum, planar, damped with torque      317
Pendulum, planar, first integral for      195 196 200 281
Pendulum, planar, on cylinder      201 202
Pendulum, planar, period of      203
Pendulum, planar, rotated      331 432
Pendulum, planar, spherical      534r
Period      54 56 87 114 179 182
Period in conservative system      203
Period near homoclinic loop      214
Period of pendulum      203
Period-doubling bifurcation      87—92 88 468
Period-doubling bifurcation in Duffing      514
Period-doubling bifurcation in Henon      471 472
Period-doubling bifurcation in logistic map      94—97 95 98 100 101 103r
Period-doubling bifurcation in Lorenz      522
Period-doubling bifurcation in three-space      512 513 514 522r
Period-doubling bifurcation, bifurcation diagram of      87
Periodic equation      see “One-periodic equation”
Periodic orbit      179 365—388
Periodic orbit bifurcation      382
Periodic orbit from homoclinic loop      385 386
Periodic orbit of maps      87 445
Periodic orbit, hyperbolic      377 392
Periodic orbit, linearization of      381
Periodic orbit, nonexistence of      373
Periodic orbit, nonhyperbolic      381
Periodic orbit, quasi-hyperbolic      398 399 401
Periodic orbit, saddle-node bifurcation of      384 401
Periodic point of maps      87 445
Periodic solution      54 56 114 116 179
Periodic solution, asymptotically stable      114—115
Periodic solution, derivative of Poincare map      130 136
Periodic solution, hyperbolic      127 131
Periodic solution, nonhyperbolic      131 137 141 143
Periodic solution, stable      114—115
Periodic solution, unstable      114—115
Periodic vector field      21
Perturbation      26
Phase portrait      10 12 13 14 178
Phase portrait of linear systems      242
Phase portrait on circle      22 55
Phaser      IX 8
PHASER, equations in the library of: anosov      492
PHASER, equations in the library of: arnold      165
PHASER, equations in the library of: cremona      491
PHASER, equations in the library of: discubic      102
PHASER, equations in the library of: dislin2d      453
PHASER, equations in the library of: dispprey      484
PHASER, equations in the library of: dzero1      409
PHASER, equations in the library of: dzero2      410
PHASER, equations in the library of: dzero3      410
PHASER, equations in the library of: forceduf      504
PHASER, equations in the library of: forcevdp      501
PHASER, equations in the library of: gauss      468
PHASER, equations in the library of: gingerman      492
PHASER, equations in the library of: gradient      440
PHASER, equations in the library of: harmoscil      530
PHASER, equations in the library of: henheile      534
PHASER, equations in the library of: henon      461
PHASER, equations in the library of: hilbert2      385
PHASER, equations in the library of: hilbert4      388
PHASER, equations in the library of: hopf      214
PHASER, equations in the library of: icremona      491
PHASER, equations in the library of: linear2d      184 214
PHASER, equations in the library of: lorenz      522
PHASER, equations in the library of: lozi      461
PHASER, equations in the library of: mathieu      492
PHASER, equations in the library of: mod      155
PHASER, equations in the library of: pendulum      184
PHASER, equations in the library of: pitchfork      214
PHASER, equations in the library of: predprey      184
PHASER, equations in the library of: rossler      514
PHASER, equations in the library of: saddlenod      214
PHASER, equations in the library of: silnikov      518
PHASER, equations in the library of: silnikov2      519
PHASER, equations in the library of: singer      103
PHASER, equations in the library of: tent      103
PHASER, equations in the library of: zeroim      515
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте