Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dennis J.B. — Mathematical Programming and Electrical Networks
Dennis J.B. — Mathematical Programming and Electrical Networks



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematical Programming and Electrical Networks

Àâòîð: Dennis J.B.

Àííîòàöèÿ:

Solving certain mathematical programming problems by setting up an equivalent electrical network which automatically establishes a current distribution that represents an optimal solution.


ßçûê: en

Ðóáðèêà: Òåõíîëîãèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1 edition

Ãîä èçäàíèÿ: 1959

Êîëè÷åñòâî ñòðàíèö: 186

Äîáàâëåíà â êàòàëîã: 28.03.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Algorithms for diode-source networks      56—71
Algorithms for linear programming      101—107
Algorithms for network flow problems      73—74
Algorithms for quadratic programming      104—107
Algorithms for the maximum flow problem      72—73
Algorithms for the shortest path problem      71—72
Basic solution of generalized terminal-pair system      171
Basic solution of terminal-pair system      81
Breakpoint curves as solution set of a terminal-pair system      159—168
Breakpoint curves as terminal characteristic of networks containing diodes      39—43
Breakpoint curves, defined      159—160
Breakpoint tracing method for a reduced terminal-pair system      91—92
Breakpoint tracing method for a terminal-pair system      82—87
Breakpoint tracing method for an uncoupled system      88—91
Breakpoint tracing method for the completely degenerate system      92
Breakpoint tracing method for the generalized system      87—88 169—180
By-pass method for linear and quadratic programming      103—106
By-pass method for obtaining feasibility      98—101
Complemementary slackness and the diode circuit element      34
Complemementary slackness in general programming      12—17
Complemementary slackness principle, for concave programming      157
Complemementary slackness principle, for linear and quadratic programming      25 143—144
Concave (convex) functions      9—11 148—152
Concave (convex) functions, defined      148
Concave (convex) functions, properties      148—152
Concave (convex) programming      26 38—39 153—158
Concave (convex) programming and nonlinear resistors      38—39
Concave (convex) programming, complementary slackness      157
Concave (convex) programming, duality      26 157
Concave (convex) programming, Lagrangian problem      154
Cone, defined      12
Conjugate variable pairs      81
Constraint qualifications      132—133 135—137
Constraint set      7
Convex hull, defined      120
Convex set, defined      120
Convex set, defined by convex inequalities      10 131
Convex set, polyhedral      121
Current reduced network      34—35 56 93 96—101
Current source      29
Degeneracy in the breakpoint tracing method      81 87 169
Diode and complementary slackness      34
Diode, defined      29—31
Diode-source networks, algorithms for solving      56—71
Diode-source networks, existence conditions      54—55
Diode-source networks, nonredundancy assumptions      53—54
Duality and conservation of energy      34 93
Duality in ordinary minimization      21—23
Duality theorem, for concave programming      157
Duality theorem, for linear and quadratic programming      23—25 141
Duality, topological, for diode-source networks      51
Electrical devices, current sources      29
Electrical devices, diodes      29—31
Electrical devices, resistors, linear      31
Electrical devices, resistors, nonlinear      38—39
Electrical devices, transformers      31
Electrical devices, voltage sources      29
Electrical models for linear programming      93—95
Electrical models for maximum flow problem      47—48
Electrical models for network flow problem      51—52
Electrical models for quadratic programming      93—95
Electrical models for shortest path problem      49—51
Electrical models for terminal-pair system      78—80
Electrical networks, diode-source      53—71
Electrical networks, diode-source-resistor      31—34
Electrical networks, graphs      27
Electrical networks, incidence matrix      27—28
Electrical networks, laws      29
Electrical networks, reduced      34—35 56—62 67—68 93 96—101
Electrical networks, with ideal transformers      35—37
Existence conditions for diode-source networks      54—56
Existence theorem for linear and quadratic programming      142
Existence theorem, interpretation in terms of reduced networks      34—35
Extreme point, defined      120
Feasible vector      6
Ford — Fulkerson method      73—74
Functions, concave (convex)      9—11 148
Functions, Legendre transformation      18—21 148—152
Functions, strict increase property      148
General programming problem      6—7 9—17 113—117 131—137
General programming problem, complementary slackness      12—17
General programming problem, constraint qualification      132—133 135—137
General programming problem, fundamental theorem      17 133—134
General programming problem, Kuhn — Tucker conditions      12—17 133—134
General programming problem, Lagrange multipliers      11—17
General programming problem, Lagrangian problem      11—17 133
General programming problem, local and global minima      9—11 131—132
General programming problem, method of steepest descent for      113—117
Generalized terminal-pair system      87—88 169—180
Gradient method for equality constrained minimization      110—113
Gradient method for the general programming problem      113—117
Gradient method for unconstrained minimization      109—110
Graph of a network      27—28
Half space, defined      119
Hyperplane, defined      119
Incidence matrix      27—28
Incremental solutions of terminal pair system      82—83
Kirchoff’s loop law      29
Kirchoff’s node law      29
Kuhn — Tucker conditions      12—17 133—134
Lagrange multipliers      11—17
Lagrangian problem for concave programming      154
Lagrangian problem for equality constrained minimization      22
Lagrangian problem for linear and quadratic programming      24 139—149
Lagrangian problem for the general programming problem      11—17
Legendre transformation      18—21 148—152
Legendre transformation, defined      20 152
Legendre transformation, example      21
Legendre transformation, properties      148—152
Line, defined      12
Linear programming      7—8 23—25 93—95 101—107 138—147
Linear programming, by-pass algorithm      104—107
Linear programming, complementary slackness      25 143—144
Linear programming, duality      23—25 141
Linear programming, electrical model      93—95
Linear programming, existence of optima      25 141
Linear programming, valve algorithm      101—103
Local minima      9—10 109 131
Loop, in a network      53
Maximum flow problem, algorithm for      72—73
Maximum flow problem, electrical model      47—48
Minimization problems, duality in      21—23
Minimization problems, equality constrained, steepest descent method      110—113
Minimization problems, quadratic      21—23
Minimization problems, steepest descent method for      108—110
Monotone functions, strict increase property      148
Network flow problems      45—53 71—75
Network flow problems with quadratic costs      74—75
Network flow problems, electrical model      51—52
Network flow problems, Ford — Fulkerson algorithm      73—74
Notation      4—5
Objective function      6
Optimal vector      7
Path, in a network      53
Power      29
Power and duality      34 93
Primal-dual method      106
Programming, concave (convex)      26 38—39 153—158
Programming, general (nonlinear)      6—7 9—17 113—117 131—137
Programming, linear      7—8 23—25 93—95 101—107 138—147
Programming, quadratic      8 23—26 93—95 104—107 138—147
Quadratic programming      8 23—26 93—95 104—107 138—147
Quadratic programming, application to a steepest descent method for the general programming problem      114—117
Quadratic programming, by-pass algorithm      104—107
Quadratic programming, complementary slackness      25 143—144
Quadratic programming, duality      23—25 141
Quadratic programming, electrical models      93—95
Quadratic programming, existence of solutions      25 142
Quadratic programming, Lagrangian problem      24
Quadratic programming, uniqueness      24 143—144
Reduced networks and existence of solutions      35 54—56
Reduced networks and feasibility      34—35 93
Reduced networks, current      34—35 56 67—68 93 96—101
Reduced networks, voltage      34—35 56—62 93 101
Relative minima      9—11 109 131
Shortest path problem, algorithm for      71—72
Shortest path problem, electrical model      49—51
Simplex method      77—78 103
Steepest descent method for equality constrained minimization      110—113
Steepest descent method for nonlinear programming      113—117
Steepest descent method for unconstrained minimization      108—110
Strict increase property      148
Summary of results      2—3
Terminal pair system for linear programming      101—107
Terminal pair system for obtaining feasibility      96—101
Terminal pair system for quadratic programming      104—107
Terminal pair system, basic solutions      81
Terminal pair system, completely degenerate      92
Terminal pair system, degeneracy      81 87 169
Terminal pair system, dual reduced      92
Terminal pair system, electrical model for      78—79
Terminal pair system, generalized      87—88 169—180
Terminal pair system, incremental solutions      82—83
Terminal pair system, primal reduced      91—92
Terminal pair system, terminal solutions and break-point curves      39—43
Terminal pair system, tracing procedure      82—87
Terminal pair system, uncoupled      88
Terminal pair system, unit solutions      82—83
Transportation problem      46
Uniqueness of solutions in concave programming      157
Uniqueness of solutions in quadratic programming      25 143—144
Unit solutions of terminal-pair system      82—83
Valve algorithm for linear programming      101—103
Valve algorithm for obtaining feasibility      96—98 101
Voltage reduced network      34—35 56—62 93 101
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå