Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Doi M., Edwards S.F. — The theory of polymer dynamics
Doi M., Edwards S.F. — The theory of polymer dynamics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The theory of polymer dynamics

Àâòîðû: Doi M., Edwards S.F.

Àííîòàöèÿ:

This book provides a comprehensive account of the modern theory for the dynamical properties of polymer solutions. The theory has undergone dramatic evolution over the last two decades due to the introduction of new methods and concepts that have extended the frontier of theory from dilute solutions in which polymers move independently to concentrated solutions where many polymers converge. Among the properties examined are viscoelasticity, diffusion, dynamic light scattering, and electric birefringence. Nonlinear viscoelasticity is discussed in detail on the basis of molecular dynamical models. The book bridges the gap between classical theory and new developments, creating a consistent picture of polymer solution dynamics over the entire concentration range.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ôèçèêà òâ¸ðäîãî òåëà/Ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1994

Êîëè÷åñòâî ñòðàíèö: 391

Äîáàâëåíà â êàòàëîã: 17.08.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Richter, D.      138 186 284
Rigatti, G.      379
Rigid constraints      76—80
Rigid rod model, basic equations      290—297 318—321
Rigid rod model, theoretical results, dielectric relaxation      304—306
Rigid rod model, theoretical results, diffusion constant      297 300
Rigid rod model, theoretical results, dynamic structure factor      300—303
Rigid rod model, theoretical results, electric birefringence      306—307
Rigid rod model, theoretical results, relaxation times      299
Rigid rod model, theoretical results, viscoelasticity      307—316
Risken, H.      89
Roberts, D.E.      322
Rochefort, W.E.      287
Roe, G.M.      137
Rondelez.F.      186 284 348
Roots, J.E.      285
Roovers, J.E.L.      185 217 287
Rotational friction constant      291—293
Rotational motion of rodlike polymers, equation of orientational tensor, concentrated solutions      359 364 365
Rotational motion of rodlike polymers, equation of orientational tensor, dilute solutions      313
Rotational motion of rodlike polymers, rotational diffusion constant, definition      290—291
Rotational motion of rodlike polymers, rotational diffusion constant, dilute solutions      298
Rotational motion of rodlike polymers, rotational diffusion constant, experimental results      335—336
Rotational motion of rodlike polymers, rotational diffusion constant, semidilute solutions      327—330 331—332
Rotational motion of rodlike polymers, Smoluchowski equation      294—295
Rotational operator      293
Rotational relaxation times of flexible polymers      96
Rotational relaxation times of rodlike polymers      299 331 363
Rotne, J.      116 139
Rouse model, basic equations      91—96
Rouse model, normal coordinates of      94—95
Rouse model, theoretical results, diffusion constant      95
Rouse model, theoretical results, dynamic structure factor      132—135
Rouse model, theoretical results, relaxation times      96
Rouse model, theoretical results, viscoelastitity in melt      225—226 241—243 259—260
Rouse model, validity of the model      93—94 218—219
Rouse, R.E.      61 137
Rubinstein, M.      217
Russo, P.S.      348
Saab, H.H.      286
Saito, N.      185 322 323
Sakamoto, M.      322
Sakanishi, A.      138
Salaris, F.      348
Sammler, R.L.      187
Samulski, E.T.      287
Sarma, G.      185
Saupe, A.      379
Scaling laws for dilute solutions      32—35
Scaling laws for semidilute solutions      152—155
Scattering intensity      21
Scattering vector      21
Schaefer, D.W.      166 184 185 186 322
Schaefer, L.      45 185
Schmidt, M.      138
Schofield, P.      322
Schrag, J.L.      138 187 322
Screening of excluded volume interaction      151
Screening of hydrodynamic interaction      173
Second virial coefficient      141 154
Segmental motion of reptation model      198—202 211—213
Segmental motion of Rouse — Zimm model      132—135
Segre, U.      379
Sekiya, M.      286
Self diffusion constants of flexible polymers, dilute solutions      100 102—103
Self diffusion constants of flexible polymers, entangled regime      200 215
Self diffusion constants of flexible polymers, Rouse regime      95
Self diffusion constants of rodlike polymers, dilute solutions      297 299—300
Self diffusion constants of rodlike polymers, semidilute solutions      327 331
Self diffusion constants, definition      95
Self diffusion constants, experimental results      170—171 219 234—244
Self diffusion constants, Kirkwood formula      106 120
Self diffusion constants, variational bounds      119—121
Semenov, A.N.      379
Semidilute solutions      see “Classification of solutions”
Shah, S.      185
Shahinpoor, M.      90
Shear deformation, flow alignment of rodlike polymers      314—316 372—373
Shear deformation, kinematics      240 255 259
Shear deformation, stresses in      240 255—256
Shear rate      108 259
Shear relaxation modulus of flexible polymers, entangled regime      226—228
Shear relaxation modulus of flexible polymers, Rouse regime      226—228
Shear relaxation modulus of rodlike polymers, concentrated solutions      366
Shear relaxation modulus of rodlike polymers, dilute solutions      312
Shear relaxation modulus of rodlike polymers, semidilute solutions      338—339
Shear relaxation modulus, definition      108 222—225
Shear strain      240
Shen, M.C.      138
Shish-kebab model      see “Rigid rod model”
Short range interaction      24
Shurr, J.M.      322
Simha, R.      90 187
Singh, P.      45
Smith, B.A.      287
Smoluchowski equation, general form      46—51
Smoluchowski equation, irreversibilty      52—53
Smoluchowski equation, relation to Langevin equation      54—55
Sole, K.      137
Sorensen, J.P.      323
Southwick, J.G.      348
Star polymers, diffusion of      213—215 278
Star polymers, viscoelasticity of      278—281
Statman, D.      348
Steady state compliance, definition      225
Steady state compliance, experimental results      230—231
Steady state compliance, theoretical results, reptation model      230 280—281
Steady state compliance, theoretical results, rodlike polymers      366
Steady state compliance, theoretical results, Rouse model      226 260
Steady state viscosity      see “Viscosity of solutions”
Stein, R.S.      284
Stephen, M.J.      44
Stewart, W.E.      323
Stockich, T.M.      187
Stockmayer, W.H.      44 137 138 284
Stokes approximation      67
Storage modulus      see “Complex modulus”
Straley, J.P.      379 380
Stress optical coefficient      127 221—222
Stress optical law      221—222
Stress overshoot      257 268 270
Stress relaxation after double step strains      270—274
Stress relaxation after large step strains, comparison with experiments      249—255
Stress relaxation after large step strains, theoretical results      241—243 243—249
Stress relaxation after small step strains      see “Shear relaxation modulus”
Stress tensor, definition      73
Stress tensor, isotropic part for incompressible fluids      71
Stress tensor, molecular expressions, flexible polymers      110—112 220—221
Stress tensor, molecular expressions, general formula      72—75
Stress tensor, molecular expressions, reptation model      243—244 262—263
Stress tensor, molecular expressions, rodlike polymers (isotropic phase)      307 336—337 338
Stress tensor, molecular expressions, rodlike polymers (nematic phase)      365
Structure factors of concentrated solutions      147148
Structure factors of excluded volume chains      34—35
Structure factors of Gaussian chains      22—23
Structure factors of semidilute solutions      152—153
Stuart, H.A.      139 322
Takahashi, K.      323
Takahashi, M.      286 287
Tamura, M.      285
Tanaka, F.      185
Tanaka, G.      44 138
Tanaka, H.      138
Tanaka, T.      137
Tanford, C.      137
Tanner, J.E.      284
Tanner, R.I.      287
Tassin, J.F.      286
Taylor, C.R.      286
Teramoto, A.      348
Teramoto, E.      44 137
Teraoka, I.      348
Thermotropic liquid crystals      378
Theta temperature      26 143
Time correlation functions, definition      55—58
Time correlation functions, examples      see “Brownian motion”
Time correlation functions, initial decay rate      57—58
Time correlation functions, relation to response functions      58—62
Tinoco, I.Jr.      322
Tirrell, M.      219 284 288
Tobolsky, A.V.      220 284
Toda, N.      285
Tominaga, Y.      322
Topological interactions      see “Entanglements”
Toporowski, P.M.      185
Translations diffusion      see “Self diffusion constant”
Treloar, L.R.G.      216 284
Truesdell, C.      284
Tschoegl, N.W.      286
Tsunashima, Y.      138 186
Tsvetkov, V.N.      139 186 322
Tube model of flexible polymers in rubber      188—189
Tube model of flexible polymers, conformation of polymers      see “Primitive chain”
Tube model of flexible polymers, constraint release      238 281 282
Tube model of flexible polymers, dynamics      see “Reptation model”
Tube model of flexible polymers, tube deformation      238—239
Tube model of flexible polymers, tube diameter      188—206 230—234
Tube model of flexible polymers, tube reorganization      238 281 282
Tube model of rodlike polymers, basic equations      326—336
Tube model of rodlike polymers, constraint release      328
Tube model of rodlike polymers, fluctuations within the tube      340—345
Tube model of rodlike polymers, theoretical results, diffusion constants      331
Tube model of rodlike polymers, theoretical results, relaxation times      331
Tube model of rodlike polymers, theoretical results, viscoelasticity      336—340
Tube model of rodlike polymers, tube diameter      328—330
Tube model of rodlike polymers, tube dilation      334—335 345—346 360
Tube segments      194 196
Tulig, T.J.      288
Two parameter model      27
Urabe, H.      322
Van Kampen, N.G.      89
Van Krevelen, D.W.      285
Van Saarloos, W.      89
Variational principles in Brownian dynamics      82—83
Variational principles, bounds for diffusion constant      119—121
Variational principles, bounds for intrinsic viscosity      116—119
Vasilyeva, N.V.      380
Vaughan, W.E.      349
Velocity gradient tensor      70 258
Venkatraman, S.      348
Verdier — Stockamyer model      129—131
Verdier, P.H.      137
Vinogradov, G.V.      269 287
Viovy, J.L.      255 285 286
Virtual work      75—76 81—82
Viscoelasticity      see “Linear or nonlinear viscoelasticity”
Viscosity number      see “Intrinsic viscosity”
Viscosity of solutions, flexible polymers, concentration dependence      235—236
Viscosity of solutions, flexible polymers, dilute solutions      112—114 116—119
Viscosity of solutions, flexible polymers, molecular weight dependence      237—238
Viscosity of solutions, flexible polymers, non-Newtonian      256 267
Viscosity of solutions, flexible polymers, prediction of reptation model      229—230
Viscosity of solutions, flexible polymers, prediction of Rouse model      226
Viscosity of solutions, rodlike polymers, dilute solutions      311 318
Viscosity of solutions, rodlike polymers, nematic phases      367—369 372—373 376
Viscosity of solutions, rodlike polymers, semidilute solutions      367 372—377
Viscous stress in flexible polymers      221
Viscous stress in rodlike polymers      308—310 337—338
Viscous stress, definition      81—82
Volkenstein, M.V.      43 139
Vologodskii, A.      185
Vrentas, C.M.      254 286
Wada, A.      322
Wada, E.      185
Wada, Y.      90 322 323 348
Wagner, M.H.      286
Wales, J.L.S.      284
Wall, F.T.      44
Walters, K.      284
Wang, C.C.      349
Warchol, M.P.      349
Warner, M.      216 288
Watanabe, H.      287 322
Watanabe, R.      380
Wax, N.      89
Weil,G.      106 138
Weiss, G.H.      138
Wendel, H.      236 285
Wick's theorem      37
Widom, B.      45
Wiener distribution      16
Wilcoxon, J.      322
Wilemski, G.      138
Wilkes, G.L.      284
Williams, C.      44 184
Williams, G.      349
Williams, M.L.      283
Wilmers. G.      44
Wilson, C.A.      138
Wilson, K.G.      32 45
Wiltzius, P.      155 185
Windwer, S.      44
Winnik, M.A.      287
Wissbrun, K.F.      380
Witten, T.A.Jr.      45
Wong, C.P.      379
Xystris, N.      348
Yamakawa, H.      43 44 90 114 137 138 322 323
Yamamoto, A.      44
Yamamoto, I.      348
Yamamoto, M.      284
Yamaoka, K.      322
Yoshimatsu, S.      287
Yoshimura, T.      187
Yoshizaki, T.      322
Yu, H.      186
Yu, L.P.      287
Yunoki, Y.      323
z expansion      28 41—43
Zapas, L.J.      266 286 287
Zero, K.M.      348
Zimm model, basic equations      97—98
Zimm model, preaveraging approximation      97
Zimm model, theoretical results, diffusion constant      100 103
Zimm model, theoretical results, dynamic structure factor      104—8 135
Zimm model, theoretical results, relaxation times      100 103
Zimm model, theoretical results, viscoelasticity      114—116
Zimm, B.H.      44 97 137 139
Zinn-Justin, J.      45
Zoucher, H.      380
Zwanzig, R.      89 138
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå