Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods

Àâòîðû: Amrein W.O., Sinha K.B., Jauch J.M.

Àííîòàöèÿ:

Everyone concerned with the teaching of physics at the advanced undergraduate or graduate level is aware of the continuing need for a modernization and reorganization of the basic course material. Despite the existence today of many good textbooks in these areas, there is always an appreciable tijne-lag in the incorporation of new viewpoints and techniques which result from the most recent developments in physics research. Typically these changes in concepts and material take place first in the personal lecture notes of some of those who teach graduate courses. Eventually, printed notes may appear, and some fraction of such notes evolve into textbooks or monographs. But much of this fresh material remains available only to a very limited audience, to the detriment of all. Our series aims to fill this gap in the literature of physics by presenting occasional volumes with a contemporary approach to the classical topics of physics at the advanced undergraduate and graduate level. Clarity and soundness of treatment will, we hope, mark these volumes, as well as the freshness of the approach.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1977

Êîëè÷åñòâî ñòðàíèö: 692

Äîáàâëåíà â êàòàëîã: 12.01.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Relatively compact      318
Rellich theorem      319
Rellich — Kato condition      315
Resolution of the identity      179
Resolvent      127 200—203
Resolvent equation, first      202
Resolvent equation, second      249
Resolvent of free Hamiltonian      266—268 370
Resolvent set      201
Resolvent, holomorphy of      202
Resonance scattering      12 493—494
Restriction      38
Riccati — Bessel, —Hankel and —Neumann functions      496—498 482
Riesz representation theorem      29 97
Riesz — Fischer theorem      31
Rollnik potential      345—346 385
Rotation group      453—459 470 481 501
S-matrix      see also "R-matrix" 226 229 253—255 277 489 518
S-operator      138 145—152 156 226 247 250—254 463—467 562 581—584 586—587 596—598 625
Scalar product      20 30 95
Scattering amplitude      286—293 339 421—426 448 465—468 514—516 518—519 525—526 627—628
Scattering angle      4 468
Scattering at large distances      331—333 349
Scattering channel      see "Channel"
Scattering cross section      see "Cross section"
Scattering into cones      279—282 308 544—545 618—623 640—642
Scattering length      519
Scattering operator      see "S-operator"
Scattering states      136 166—168 262—269 303—305 569—570 607—609 636
Schatten — von Neumann ideal      449
Schroedinger Equation, radial      341—342 483
Schroedinger equation, time-dependent      110—111 237
Schroedinger equation, time-independent      237 396—398 437
Schroedinger operator      322 475—480
Schroedinger picture      113
Schwarz inequality      21
Screened potential      333 349
Self-adjoint operator      53 56—58 69—71 236 319 469
Separable Hilbert space      20—21 31—32
Separable interaction      333—339 353 392 451 513
Separating vector      548—549
Short range potentials      148 328
Simple scattering system      141
Simple spectrum      228 376—378 461 480 543
Singular part (of an operator)      209
Singular spectrum      209
Singular values      72—73 77
Singularly continuous operator      209 211
Singularly continuous part      209
Singularly continuous spectrum      209
Smoothness      380—382 392—393
span      70
Spatial isomorphism      559
Spectral family      104—107 179—183 221
Spectral integral      239—244 256—257
Spectral measure      180—182 207 360 389
Spectral multiplicity      227
Spectral representation      215—229 436
Spectral theorem      71 194—197 231—235
Spectral transformation      225—228 404—409 434—436 461—463
Spectrum      201
Spherical harmonics      495 498—501
Spherical symmetry      452—468 475—494 543
Spherically symmetric function      455
Spin      9 108—109 115 129 154 470
Spin-flip, spin-non-flip amplitude      474
Spin-orbit interaction      469—475
Square root      189 230 234
Square well      323 328
Stark potential      325
State      102—103
Stationary state      111—112
Stationary state, scattering theory      244—255 382—385 544 595—598
Stone's theorem      100—102 125—127 130
Strong continuity      79 100 160
Strong convergence      23—24 59—63 95—96
Strong derivative      101 161
subspace      27 47—48
Subspace of absolute continuity      208 210 213
Subspace of continuity, of discontinuity      205—207 265—269 303—305
Subspace of singularity      208
Sum of operators      43—44
Support of a spectral family      180
Symmetric operator      52—57 173
Symmetry (group)      100 109 148—152 586—587
TARGET      5 289
Tensor product      83—86 98 501 599 629
Three-body problem      644—676
Threshold      594 626
Time delay      270—277 306—308
Time-evolution      109—113
Time-reversal      151 166 292—293 353 501 554 587
Total cross section      see "Cross section"
Total evolution      133 576
Total Hamiltonian      134 322 341—346 463 471—473 476—480 603—605 607—613
Total Hamiltonian, absence of singularly continuous spectrum      426—432 451 634
Total Hamiltonian, absolutely continuous part      215 365 368 375 404—415 612—613 635
Total Hamiltonian, boundedness below      324 603 607
Total Hamiltonian, discrete spectrum      427 434 634 668
Total Hamiltonian, embedded eigenvalues      427—428 449—450 487 502 508 634 642
Total Hamiltonian, essential spectrum      323 611—613 629—634
Total Hamiltonian, Green's function      439—440
Total Hamiltonian, resolvent of      359—364 439 647—658
Total mass      299 605
Total momentum      299 310 588 605
Trace      77—78 98
Trace, class      78—79 294
Trace, criterion      386—387
Trace, norm      77 98
Triangle inequality      22
Two-Hilbert space formulation      584—586 594
Unbounded operator      40
Uniform boundedness principle      61
Uniform convergence      60 62—63
Unilateral shift operator      51 79
Unit ray      103
Unit vector      48
Unitarity of S      147 151 166 292 583—586 599
Unitary group      100—102 200
Unitary group, continuity of      100 129
Unitary operator      52 232
Unperturbed evolution      133 570—574
Unperturbed Hamiltonian      134
Upper bound of spectral family      180
Vector      19
Vector, representation      454—455
Vector-valued function      159 216
Virtual eigenvector      see "Quasi-bound state"
Volterra integral equation      486 502
von Neumann algebra      550 556 560
Wave homomorphism      545—552 559—561
Wave operators      138—151 164 215 245—247 553 580—582 585—586 592 595—598 614—618
Wave operators, existence of      326—328 335 346—349 353 379 473 502 562 614—616 643
Wave operators, generalized      154—157 169 529 537—540 544 550—553 559—561
Wave vector      396
Weak continuity      79
Weak convergence      23—24 60—61 63
Weak coupling      362 368 375 508—509 635
Weak solutions      437
Weinberg — van Winter equations      669
Weyl — von Neumann theorem      324
Yukawa potential      323 328 524—526
Zero vector      19—20
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå