Авторизация
Поиск по указателям
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Solitons and the Inverse Scattering Transform
Авторы: Ablowitz M.J., Segur H.
Аннотация: A study, by two of the major contributors to the theory, of the inverse scattering transform and its application to problems of nonlinear dispersive waves that arise in fluid dynamics, plasma physics, nonlinear optics, particle physics, crystal lattice theory, nonlinear circuit theory and other areas. A soliton is a localised pulse-like nonlinear wave that possesses remarkable stability properties. Typically, problems that admit soliton solutions are in the form of evolution equations that describe how some variable or set of variables evolve in time from a given state. The equations may take a variety of forms, for example, PDEs, differential difference equations, partial difference equations, and integrodifferential equations, as well as coupled ODEs of finite order. What is surprising is that, although these problems are nonlinear, the general solution that evolves from almost arbitrary initial data may be obtained without approximation.
Язык:
Рубрика: Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1981
Количество страниц: 425
Добавлена в каталог: 13.12.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Reftectionless potential 38
Relativity 337
Resonance 241 242 300 301
Resonant atomic frequency 303 329
Resonant interaction 96 190
Resonant quartet 302 303 311—313
Resonant triad 152 190 300—314 346 347
Reversible shock 6
Riccati equation 7 235 266
Ricci tensor 337
Richtmeyer, R.D. 352
Riemann surface 142 144 147
Riemann theta function 147
Riemann — Hilbert problem 25 26 99 266 338
Riemann — Hilbert problem, differential 216 266
Riemann — Lebesgue lemma 358 368
Rizk, M.H. 312
Rizov, V.A. 152
Rosales, R. 40
Roskes, G.J. 318 320
Rossby wave 297—300
Rossby, G.G. 297
Rota, G.C. 355
Rubenchik, A.M. 114 250 260
Ruby 305 307 330
Ruijsenaars, S.N.M. 342
Rund, W. 2 168 170 261
Rungaldier, H. 325
Russell, J.S. 277 282
Salamo, G.J. 337
Salihoglu, S. 238
Samelson, H. 167
Sandri, G. 374 387 388
Santini, P.M. 290
Sanuki, H. 54 159
Sasaki, R. 330
Sato, M. 248
Satsuma, J. 84 85 113 114 152 172 183 187 190 191 200 211 212 215 232
Scattering data 16 20 25 28—32 48 49 53 57 61 65 66 70—75 85 88 342
Scattering matrix 99
Scattering theory 15
Schroedinger equation 7 9—13 15 26—28 31 33 38 46 51—53 58 59 68 75 89 115 134 139 216 221 357
Scott, A.C. 168 170 326
Second harmonic generation 306—308
Secular term 72 251 275 280 281 299 305 314 319 320 326 332 337 343
Secularity condition 251 252
Segur, H. 1 8 9 28 40 42 68 71 75 78 80 81 82 85 89 113 217 218 219 228 236 238 239 240 243 244 245 248 260 268 294 296 309 316 318 320 323 324 325
Self-adjoint 272
Self-dual network equation 121 131
Self-focusing singularity see “Focusing singularity”
Self-induced transparency (SIT) 260 329—337 348 349 379 383
Self-induced transparency (SIT), mechanical analogue of 349
Self-modal interaction 96
Self-self interaction 96
Self-similar equation 217 227 228 238 240 245 246 249 265 267 268 286 336 357 363 365 366
Self-similar solution 152 232—250
Semi-infinite problem 28
Shabat, A.B. 1 8 10 11 28 34 40 53 68 80 99 110 114 156 217 228 229 233
shelf 252—256 284
Shulman, E.I. 152
Similarity equation 40 196 203
Similarity solution 69 197 233 236 238 266 356 357 365 386
Simmons, W.F. 310
Sine-Gordon equation 8 9 13 34 35 38 90 134 149 155 159 170 181 190 217 237 238 262 265 267 326—338 348 366
Singular equation 26 203
Singular-point analysis 237 240—243
Singularities for solitons 33 34
Singularities of an ODE, fixed 234 235 239
Singularities of an ODE, movable 234 235 239 240
Sklyanin, E. 342
Slinky 345
Slow variable 251
Slusher, R.E. 330 331 336 337
Smith, R.K. 311
Solitary wave 2 5 6 238 250 251 254—259 282 297 336 341 379
Soliton 67 68 74 75 79 80 83 86 89 90 91 151 152 156 159 160 161 167 171 172 174 175 179—191 238 250—255 259—262 265 266 269 270 275 276 281—286 290 295 296 315 317 318 323—326 334 338 341 344 349 383
Soliton perturbation 250—261
Soliton phase shift formula 174 175
Soliton resonance 189 232 266
Soliton stability 259 (see also “Transverse stability”)
Soliton superposition (permutation) formula 187 188 265
Soliton wave 36 38 41
Soliton, definition 6
Southern Tropical Disturbance 299 300
Spectral band 146 (see also “Unstable band”)
Spectrum 159 161 307 308 317 “Continuous “Eigenvalue” “Main
Square well 28
Squared eigenfunction 42—52
Stationary phase 356 357 359 364 368 371
Steepest descents 356 364 384
Sternberg, S. 152
Stewartson, K. 318 320
Stochastic 67 276
Stoker, J.J. 277
Stokes multiplier 249
Stokes, G.G. 348
Stratified fluid 203 211
Stromberg, K. 358
Su, C.S. 277
Sudan, R.N. 255
Sugawa, M. 312
Sugaya, R. 312
Surface tension 260 268 277 280 289—292 319 322
susceptibility 301 302
Sutherland, B. 203 206
Suzuki, K. 114 183
Synakh, V.S. 256 258 273 316 317
Taha, T. 124
Takhtadzhyan, L.A. 58 290 342
Talanov, V.I. 258 315
Tanaka, S. 41 68 134
Taniuti, T. 51 250 277
Tappert, F.D. 28 38
Taylor, G.I. 290
Tenenblat, K. 329
Terng, C.-L. 329
Testa, F.J. 163 265
Thacker, H.B. 341 342
thermal conductivity 3
Thickstun, N. 203
Thomson, J.A. 313
Thorpe, S.A. 310
Three-wave interaction equation 94 95 99 105 110 111 233 300 308
Time dependence 159 334
Time scale 275 276 294—299 309 313 316 319—323 348
Toda lattice (exponential lattice) 114—117 121 132 133 148 149 183 209 387
Toda, M. 114 148
Toland 283
Torus 147
Trace formula 56 57 70
Tracy, C.A. 248
Transverse perturbation 250 259 260 273 289 299 315—318 325 336
Transverse stability 250—261
Triad resonance 96 190
Trubowitz, E. 10 15 26 31 52 134 137 153 159 160 161 217
Truncation error 123
Turning point 244
Two-dimensional sine-Gordon equation 190
Two-dimensional water wave 260
Two-wave interaction equation 95
Ueno, K. 248
Ulam, S. 3 4
Unstable band 136 137 139 142 144 145—147 197
Unstable solution 355
Ursell, F. 365
Van Kampen, N.G. 376 390
Van Moerbeke, P. 116 134 137 153
Vlasov, A. 378
Volterra integral equation 17 100 139
Volterra operator 229
von Neumann, J. 353
Wadati, M. 8 14 34 40 41 54 159 190
Wahlquist, H.D. 158 161 162 163 166 263
Water wave 260 267 268 277 281—289 314 315 317 321 322 325 347
Watson, K.M. 309 313
Wave equation 277 319
Wave equation, linear 280 281
Wave front 287 372 386
Wave guide 317 318
Wave measurement 282 283
Wave packet 90 260 297 305 310—314 317 319 321 324 325 327 347—349
Wave tank 283 295 315 317 323 326
Weber, P. 342
Wehausen, J.V. 277
Wei, C.C. 250 277
Weidman, P.D. 282 297 300
Weierstrass p function 210 (see also “Elliptic function”)
Weinreich, G. 307
Weisskopf, V. 388
Wellner, M. 388
West, B.J. 309 313
Whitham, G.B. 148 190 250 251 267 277 302 351 389
Wiesler, A. 342
Wigner, E. 388
Wilkinson, D. 341 342
Willebrand, J. 313
Winkler, W. 136 137
WKB, WKBJ 71 101 255
wronskian 65 87
Wu, T.T. 248
Yajima, N. 84 85 97 190 250 275 277
Yariv, A. 302 307 308 314 316 347
Yortsos, Y.C. 197
Yuen, H.C. 318 323 325 326
Zabusky, N.J. 1 4 5 6 38 149 282 339
Zakharov — Shabat scattering problem 8—14 28 32 42—52 117 124 163 255
Zakharov, V.E. 1 8 10 11 28 34 40 41 53 55 56 57 58 67 68 71 87 89 93 97 98 99 110 114 138 152 191 199 217 228 229 232 233 237 250 256 258 260 262 267 273 290 316 317 323 337 338 339
Zeppetella, A. 266
Zero of a(k) 126 148
Реклама