Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bardou F., Bouchaud J., Aspect A. — Levy statistics and laser cooling
Bardou F., Bouchaud J., Aspect A. — Levy statistics and laser cooling



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Levy statistics and laser cooling

Авторы: Bardou F., Bouchaud J., Aspect A.

Аннотация:

This is a book about laser cooling, a new research field with many potential applications. The authors present an original approach, using the tools and concepts of statistical physics. A new understanding of laser cooling, both intuitive and quantitative, is obtained. The volume also comprises a case study allowing non-Gaussian (Lévy) statistics, a technique being used more frequently in many different fields.


Язык: en

Рубрика: Физика/Физика твёрдого тела/Приложения/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 199

Добавлена в каталог: 26.07.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sprinkling distribution, slowing down      90
Spurious mechanisms      26
Standard cooling      7—9
Statistical approach, tests      see “Tests of the statistical approach”
Statistical approach, validity, exactness      122 158
Steady-state for the tails      see “Tails of the peak of cooled atoms”
Steady-state, absence of      11 (see also “Non-ergodicity”)
Steady-state, case of a non-vanishing jump rate at p=0      94
Stochastic wave functions      17
Subrecoil cooling      see “Non-ergodic cooling” “Raman “Velocity
Subrecoil cooling as a momentum random walk      19—21
Subrecoil cooling with non-vanishing jump rate at p=0      95
Subrecoil cooling, experiments      see “Experiments on subrecoil cooling”
Subrecoil cooling, introduction to      2—3 9—12
Subrecoil cooling, quantum description      12—19 (see also “Generalized Optical Bloch Equations” “Quantum
Subrecoil cooling, various approaches (other than statistical)      102—105
Tails of the peak of cooled atoms      see “Momentum distribution (important features)”
Tails of the peak of cooled atoms for finite $\langle\tau\rangle$ and $\langle\hat{\tau}\rangle$      83
Tails of the peak of cooled atoms for infinite $\langle\tau\rangle$ and $\langle\hat{\tau}\rangle$      85
Tails of the peak of cooled atoms for infinite $\langle\tau\rangle$ and finite $\langle\hat{\tau}\rangle$      79
Tails of the peak of cooled atoms, $\theta$-dependence      92
Tails of the peak of cooled atoms, adiabatic following of the sprinkling distribution      91
Tails of the peak of cooled atoms, contribution to the sprinkling distribution      see “Sprinkling distribution”
Tails of the peak of cooled atoms, p-dependence      92
Tails of the peak of cooled atoms, physical discussion      91—92
Tails of the peak of cooled atoms, quasi-steady-state      91
Tails of the peak of cooled atoms, steady-state      91
Tails of the peak of cooled atoms, steady-state versus quasi-steady-state      91
Temperature      see “Width of the peak of cooled atoms”
Temperature, effective      8
Temperature, recoil      9
Tests of the statistical approach, shape of the peak of trapped atoms      see “Shape”
Tests of the statistical approach, trapped atoms proportion      see “Trapped atoms proportion (statistical approach versus quantum jump simulations)”
Tests of the statistical approach, Velocity Selective Coherent Population Trapping (experiments)      see “Experiments on subrecoil cooling”
Tests of the statistical approach, versus experiments      see “Experiments on subrecoil cooling”
Tests of the statistical approach, versus Generalized Optical Bloch Equations      see “Generalized Optical Bloch Equations”
Tests of the statistical approach, versus quantum jump simulations      see “Quantum jump simulations”
Tests of the statistical approach, width of the peak of trapped atoms      see “Width of the peak of trapped atoms”
Thermal activation      43
Time average      60
Time average, versus ensemble average      see “Ensemble average”
Time, interaction      see “Interaction time”
Time, sojourn      see “Sojourn time”
Trap size      23 74
Trapped atoms proportion      60—68 (see also “Cooled atoms fraction”)
Trapped atoms proportion and non-ergodicity      67
Trapped atoms proportion for finite $\langle\tau\rangle$ and $\langle\hat{\tau}\rangle$      64
Trapped atoms proportion for infinite $\langle\tau\rangle$ and $\langle\hat{\tau}\rangle$      66
Trapped atoms proportion for infinite $\langle\tau\rangle$ and finite $\langle\hat{\tau}\rangle$      64
Trapped atoms proportion in optimized conditions      134
Trapped atoms proportion, calculation      62
Trapped atoms proportion, Laplace transform      63
Trapped atoms proportion, relation to momentum distribution      71
Trapped atoms proportion, results of the statistical approach for VSCPT (confined)      111
Trapped atoms proportion, results of the statistical approach for VSCPT (Doppler)      106 107
Trapped atoms proportion, results of the statistical approach for VSCPT (unconfined)      109
Trapped atoms proportion, statistical approach vs. quantum jump simulations (and GOBE)      105—113 Figure Figure Figure
Trapped atoms, ensemble average      60 61
Trapped atoms, time average      60
Trapping      22—34
Trapping in position space      141
Trapping of the momentum      2
Trapping time      23—25
Trapping time, deterministic model      see “Deterministic model”
Trapping time, distribution      28—34 161 170
Trapping time, exponential model      see “Exponential model”
Trapping, region      22—23 25—26
Trapping, state      151 (see also “Dark state”)
Trapping, versus recycling      61 130
Unconfined model (of recycling) for Velocity Selective Coherent Population Trapping      153 158 163
Unconfined model (of recycling), definition      26
Unconfined model (of recycling), distribution of recycling times      35—37
Unconfined model (of recycling), tests of the statistical approach      109 116
Variable change      see “Change of variable”
Velocity Selective Coherent Population Trapping      2 10—11 25 28 34 “Trapped
Velocity Selective Coherent Population Trapping, correspondence between statistical parameters and atomic and laser parameters      145—163
Velocity Selective Coherent Population Trapping, experiments      see “Experiments on subrecoil cooling”
Velocity Selective Coherent Population Trapping, Generalized Optical Bloch Equations treatment      103
Velocity Selective Coherent Population Trapping, optimization parameter      126
Velocity Selective Coherent Population Trapping, quantum jump simulations      104
Velocity Selective Coherent Population Trapping, quantum optics calculations      103—105 146—154
VSCPT      see “Velocity Selective Coherent Population Trapping”
Waiting time distribution      58 (see also “Delay function” “Trapping “Recycling
Wall, absorbing      27 140
Wall, confining      25 (see also “Confined model” “Friction”)
Width of the peak of cooled atoms      see “Momentum distribution (important features)” “Quantum
Width of the peak of cooled atoms in optimized conditions      133
Width of the peak of cooled atoms, definition      73
Width of the peak of cooled atoms, heuristic argument      70
Width of the peak of cooled atoms, result of the statistical approach for VSCPT (confined)      115
Width of the peak of cooled atoms, tests of the statistical approach      113—120 Figure Figure Figure
Wings of the momentum distribution      see “Tails of the peak of cooled atoms”
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте