Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Anderson P.W. — The theory of superconductivity in the high-Tc curprates
Anderson P.W. — The theory of superconductivity in the high-Tc curprates



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The theory of superconductivity in the high-Tc curprates

Àâòîð: Anderson P.W.

Àííîòàöèÿ:

The theory of superconductivity in the high-Tc curprates


ßçûê: en

Ðóáðèêà: Ôèçèêà/Ôèçèêà òâ¸ðäîãî òåëà/Ïðèëîæåíèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 446

Äîáàâëåíà â êàòàëîã: 26.07.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Korringa, J.      99 100
Kosterlitz — Thouless SC      42
Kosterlitz, M.      42
Kotliar, G.      177
Kramers — Kronig transform      27 38 64
Kubo formula (for conductivity), 158f      191
Kumar, N.      50 69 194—195
L.C.A.O.      14 15 207
L.C.A.O. down folding      15
Landau levels      198 428
Landau parameters, coefficients      see “Fermi liquids”
Landau, L.      26
Landauer theory and formula for conductivity      61—62 158 191
Landauer, R.      37 62 158 192
Langer, J.      167
Larkin identity      199 200
Larkin, A.      8 72 131.
Laughlin, R.      8 179 180 427
Lee, P. A.      5 18 39 158 179 190 193 431
Lee, R. H.      8 41 56
Lee, T. D.      167
Leggett, A. J.      424
Liang, S.-D.      3 7 399
Lieb — Wu solution (of 1D Hubbard)      38 131—136
Lieb.E.      131ff 176
Ligand complex-ligand field      15 see
Lin, H.      238
List, B.      7
Littlewood, P. B.      231 222 428
Local-density approx      23
localization      36—37 70 189 385—392 433
Localization, L. and interactions      267
London, F.      125
Loram, G.      112
Lower Hubbard band      90 147 178
Lu, Y.      8
Ludwig, A.      48
Luther, A. A.      48 103 138 141 158 176 185 427
Luttinger liquid      4 5 6 22 33 36—40 47—49 99 103 111 116 131—151 163—202 209—237 243—248 255—264 295—306 see
Luttinger's theorem      29 36 98 157 166 see
Luttinger, J. M.      26 33 73 171
Luttinger-Ward identities      48 192
Lye, Y      7
Magnetic scattering      see “Spin scattering” “Spin
Magneto-polarons (Shraiman — Siggia)      97
Mahan, G. D.      131
Majorana fermion      4 53 131
Malozemoff, A.      7 70
Marginal Fermi liquid      40 116 173 427—430
Marston, B.      7
Martin, B.      63
Mattis, D.      176
Mehran, F      7
Mele, S.      8 427
Metzner, W.      8 177
Microwave conductivity (in supercond. state)      119 231—232
Migdal, A. A.      26
Mihaly, L      7 81
Mila, F      100 223
Millis, A.      8 81 82 159 192
Mitzi, D.      7 226
Mixed valence      22
Momentum conservation (of IL interaction)      51
Momentum distribution n(k)      132 139
Morel, P.      43 121 123
Mott limit      36—37 81 195
Mott limit, constant      see “Mott — Yoffe — Regel”
Mott transition, Mott metal insulator T.      427
Mott — Hubbard gap      178 see
Mott — Hubbard insulator = Mott insulator      4 13 18 19 28 21 34ff 46—47
Mott — Hubbard interaction      21 218—219
Mott, N. F      13 18 19 21 22 28 37 61 42—47
Muller, A. A.      70
Multiple scattering      160 165
Nagaosa, Y.      5 39 190 193 431
Neel (ordered) antiferromagnetism      4 13 34 35 179 428
Neutron scattering      7 9 13 55 57 99 107 123 401—421 429
NMR      7 13 35 57 97—106 107 111 122 229 426 428 430 see
NMR, ${T}_{1}$      99ff 111 156
NMR, absence of Hebel — Slichter peak      119 229
NMR, at high T      424
NMR, Knight shift      100 111 113 428
Non-diffractive (forward) scattering      164
Non-Fermi liquid      5 43—49 98 132 163 265—290 427 433 see
Norman, M.      8
Nozieres, P.      26 151 433
Odd-gap solution      223
ODLRO (Strong — Talstra)      163 203 365—384
Ogata — Shiba wave function (Large U)      134 147 154
Ogata, M.      132 134. 161
Olson, C      6 7 90 93 226
One-band model (${dx}^{2} — {y}^{2}$ antibonding)      33ff
Ong., N.-P      5 7 55 63 64.66. 74 76 107 120 129 202 232 233 424 433—434
Optical spectroscopy      35 86
Orenstein, J.      81 82
Organic metals      6 22 206 267
Orthogonality catastrophe      48 131ff 173 279—90
Ott, H. R.      7
Ovshinsky, S.      423
Pair fluctuation as spin-gap mechanism      107
Pair susceptibility, (local) P.S. of ID Hubbard model      146 162
Pair susceptibility, P.S. of Lutt. Liq—in I.L. Mech.      206 209—212
Pair tunneling      see “Josephson effect”
Pairing Hamiltonian, BCS-type      52—53
Pairing Hamiltonian, interlayer      51 126
Pauling, L      423
Peierls, R.      18
Penetration depth      223 232 239
Penetration depth, c-axis      41 43 125—128 208
Penetration depth, in-plane, T-dependence      122 232 239
Penney, T.      7
Peschel      1 138 158
Petroff, Y.      7 115 224 226
phase diagram      see also “Generalized P.D.”
Phase diagram, 2D Hubbard model      70
Phase shift      132ff 167ff 249—264 279—306
Phillips, J.C.      423
Phillips, N.E.      7
Phillips. P.      158
Phonon bumps      36
Phonon drag      192
Phonon-assited tunneling      70
Phonons, (as mech. for superconductivity)      118 424
photoemission      5 7 18 35 57 83—96 224—226
Photoemission, angle-averaged      95—96 115—116 224ff 427
Photoemission, angle-resolved (ARPES)      36 37—40 45 53—55 89—95 116—119
Photoemission, ARPES gap measurement      123 226
Photoemission, cusp structure      91 116
Photoemission, in 2D: incr. resolution      89
Photoemission, line shapes      187—188 226
Plasma frequency      see “Josephson P.F.”
Plasma frequency, = interlayer      124—128
Plasma frequency, c-axis      41
Polaron      19 see
Polyacetylene      6 see
Polymers (conducting)      189 266
Pressure coefficient of Tc      42
Projective transformation      21 165 179 181—183 291—294
Projective transformation, P. constraints      182f
Pseudopotential      see “Scattering length”
Pseudopotential, anomalous      175
Pseudopotential, Lee — Yang      167 170
Quantum Hall effect      205 428
Quasi 1D materials      189
Quasiparticles, conductivity (in SC state)      213 424
Quasiparticles, in superconductrng state      119—121 229
Quasiparticles, in superconductrng state, (explained)      212—214 226
Quasiparticles, mean free path      55 430—431
Quasiparticles, pair creation      55
Quasiparticles, peak (ARPES)      55 91 119 226 430
Ramakrishnan, T.V.      384 399
Raman background (confirms IR)      38 84—85
Raman spectrum      5 20 36 45
Raman spectrum, "4-spinon"      84
Randeria, M.      8
Random-phase approximation (RPA)      185 99—100 427
Ranninger, C      427
Read. N.      18
Recoil (of scatterers)      165—169
Regel. A. R.      61
Ren. Y.      3 7 103 131—157
Renormalization      165 166 175f
Renormalization group      22 72 141 159
Renormalization, Dyson scheme      165 166
Residual interactions      206 215ff see
Resistivity, anisotropy of      36ff 189
Resistivity, c-axis      5 40 50 58 69—74 107 194—196 207f 345—352 359—364 430 434
Resistivity, experiments      34 57 58—69
Resistivity, in plane      34 37 112 155 189ff 353—358 385 392 434
Resistivity, residual      56 62—63 107
Resistivity, theories, of 5      158 434
Resonating valence bond = RVB      3 4 22 39 179—180 428 431
Resonating valence bond = RVB, (short-range, chiral) RVB      1814:48 01.02.20120
Rice, T. M.      3 8 13 21 38 100 138
Righi — LeDuc (thermal Hall effect)      107 120 434
Rokshar, D.      4. 8 40 180
Rowell, J. M.      7 58
Ruckenstein, A.      177
Rutter, L.      85
Saloman, M.      7 232 233
Sarker, S.      7 399
Sawatsky, G.      7 13 15 226
Scalapino, D. J.      202
Scattering length      167ff
Scattering matrix (T-matrix)      165 174
Schlesinger, Z.      7 33 81 82 83 203 228 234
Schluter, M.      13 23 35 63
Schrieffer, J. R.      37 61 192 194 428
Schulz, H. J.      131 158
Self-energy $\Sigma$      27 38 173
Self-trapping      19 see
Semicovalent bond      34
Semion      4
Sethna. J.      4. 40
Shankar, S.      8
Shastry, S.      3 7. 100. 131 136 200
Shen, X.-X.      7 56 118 226
Shiba.H.      132. 134 138 154
Short-range repulsion U      see “Mott — Hubbard interaction”
Shraiman, B.      97 200
Siggia, E.      3 97
Siman, B.      7 234
Singular interaction      183—84 249—254 295—306
Singular interaction, commutes with B      198
Slave bosons      39 177—181
Slave bosons, S. Fermions      39 177—181
Slichter, C. P.      119 424
Smith, J.      7
Smith, N. V.      226
Solyom, J.      141
Sorella, S.      138
Specific heat      229
Specific heat, dependence on magnetic field      229
Specific heat, spin-gap effects on      112—113
Specific heat, T-dependence      122
Spicer, W. E.      7
Spin bags      428—430
Spin fluctuations      32
Spin fluctuations, as mech, for superconductivity      116 425 426 430 see
Spin fluctuations, ferromagnetic S.F.      425
Spin fluctuations, spin gap (chiral)      180
Spin gap (= "Fermi surface eaters")      43 46 49 52 56 82—4 99 103 107 111—115 203 238—239 393—400 401—410 431 433
Spin gap (= "Fermi surface eaters"), spin gap (RVB)      180
Spin susceptibility      20 100 107 111 180
Spin susceptibility, Curie — Weiss S.S.      99 426
Spin susceptibility, Pauli, SS      39 98 180
Spin velocity      39 143
Spin waves      36
Spin, impurities      45 66—68
Spin, scattering      75—76 189 234—235 429—430
Spin-charge separation      see “Charge-spin separation”
Spinon      4 5 39ff 48ff 177—181 433
Spinon, localized s.      67—68 433
Spinon, s. carries current      433
Spinon, s. drag      78
Spinon, s. pairing      365—384 401—410
Spinon, spinon-spinon scattering      75 151
Stafford, C      7 49 81 82 156. 159 192 201
Stamp, P.      3
Stechel. E.      13 23
Stripe phase      98 431
Strong, S.      7 49 50 52 56 72 85 107 111 114 187 203 232 237 433
SU(s) gauge symmetry      180—181
Sudbo, A.      7 111
Sum rules, (Kohn)      205—208
Sum rules, conductivity      42 44
Sum rules, Friedel      63
Sum rules, photoemission      45 115—118 224—225
Superconducting cuprates, (1) $({LaBa}_{2}{CuO}_{4}\;{LaSr}_{2}{CuO}_{4},\;("214")$      4 13 19 20 37 43—44 46 63 70 97 99 107 124—128 194 196 231 237 239
Superconducting cuprates, (2) ${YBa}_{2}{Cu}_{3}{O}_{6+x}\;("YBCO")$      4 13 19 30 39 47 52 63 69 70 74 83—85 92 97 99 103 122 128 196 203 208 228 229 231 239
Superconducting cuprates, (2a) Ni, Zn doped YBCO      76—77 236
Superconducting cuprates, (3) ${(Nd - Ce)}_{2}{Cu0}_{4}\;("NDCCO")$      18 30 47 52 95 239
Superconducting cuprates, (4) ${Bi}_{2}{Sr}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+4-x}\;("BISCCO")$      30 33 37 42 52 196 227—229 231 239
Superconducting cuprates, (4) ${Bi}_{2}{Sr}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+4-x}\;("BISCCO"),$ (a) 1-layer n = 1      42 63 107 189 219
Superconducting cuprates, (4) ${Bi}_{2}{Sr}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+4-x}\;("BISCCO"),$ (b) 2-layer n = 2      40 47 66 70 89—96 107 128 203 208 224
Superconducting cuprates, (4) ${Bi}_{2}{Sr}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+4-x}\;("BISCCO"),$ (c) 3-layer n = 3      226—228 238
Superconducting cuprates, (5) ${Ti}_{2}{Ba}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{n+4-x}\;("TICO")$      42 52 196 227 238
Superconducting cuprates, (5) ${Ti}_{2}{Ba}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{n+4-x}\;("TICO"),$ 1-layer      42 43
Superconducting cuprates, (5) ${Ti}_{2}{Ba}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{n+4-x}\;("TICO"),$ 2-layer      208
Superconducting cuprates, (5) ${Ti}_{2}{Ba}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{n+4-x}\;("TICO"),$ 3-layer      238
Superconducting cuprates, (6) ${HgBa}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+2+\delta}$ (1, 2, 3-layer)      42 226—228 238
Superconducting cuprates, (7) ${YBa}_{2}{Cu}_{4}{O}_{8}("248")$      56
Superconducting cuprates, (8) ${Pb}_{2}{Sr}_{2}{Ca}_{n-1}{Cu}_{n}{O}_{2n+2+\delta}$      47 238
Superexchange      13 20 50—51 70 182 393—410 425
Superexchange, due to interlayer hopping      238 401—410
susceptibility      see “Spin S.”
Sutherland, W.      136 164
Symmetry orbitals      14 15
T-J model      21 22 23 38 100 147 177—180 181—183
Takagi, H.      7
Takigawa, M.      7 230
Talstra, Y      203
Tanner, B.H.      7 58 81 85 86
Teller, E.      423
thermal conductivity      76—80 129 201
Thermal conductivity, anisotropy of      76—80 213 230 233
Thermal conductivity, in superconducting state      119—120 232—233
Thermopower      77—80 201
Thermopower, anisotropy of      79
Thermopower, anomalous T      49 78
Thomas, G.      7 81
Thouless, D. J.      37 42 61
Timusk, T      7 40 58 124
Tomographic Luttinger liquid      5 48 163—202 210—237 243—248 249—254 255—264 295—306
Tomonaga (chiral) model      176
Tomonaga — Luttinger model      132 137 139 141ff
Transition temperature ${T}_{c}$ (superconducting)      41
Transition temperature ${T}_{c}$ (superconducting), calculation of      208—212
Transition temperature ${T}_{c}$ (superconducting), effect of spin gap on      113
Transition temperature ${T}_{c}$ (superconducting), heuristics of      41 226—228
Transport theory      5 45 162 201
Transport theory, experiment      57
Trugman, S.      43
Ts'velik, A.      7 49 161 204
tt' tight binding band structure      47
Tunneling      81 96—98 213 230—231
Tunneling density of states      62
Tunneling spectroscopy      36 88
Tunneling, asymmetry      230 231
Tunneling, conductivity      96
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå