Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Diekert V. — Combinatorics on Traces (Lecture Notes in Computer Science)
Diekert V. — Combinatorics on Traces (Lecture Notes in Computer Science)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Combinatorics on Traces (Lecture Notes in Computer Science)

Автор: Diekert V.

Аннотация:

Parallelism or concurrency is one of the fundamental concepts in computer science. But in spite of its importance, theoretical methods to handle concurrency are not yet sufficiently developed. This volume presents a comprehensive study of Mazurkiewicz' trace theory from an algebraic-combinatorial point of view. This theory is recognized as an important tool for a rigorous mathematical treatment of concurrent systems. The volume covers several different research areas, and contains not only known results but also various new results published nowhere else. Chapter 1 introduces basic concepts. Chapter 2 gives a straight path to Ochmanski's characterization of recognizable trace languages and to Zielonka's theory of asynchronous automata. Chapter 3 applies the theory of traces to Petri nets. A kind of morphism between nets is introduced which generalizes the concept of synchronization. Chapter 4 provides a new bridge between the theory of string rewriting and formal power series. Chapter 5 is an introduction to a combinatorial theory of rewriting on traces which can be used as an abstract calculus for transforming concurrent processes.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 1st edition

Год издания: 1990

Количество страниц: 165

Добавлена в каталог: 15.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$BCP(S)$      128
$M$-automaton      37
Admissible well-ordering      110
Asynchronous automaton      47
Asynchronous cellular      48
Basic critical pairs      128
Block      140
Canonical projection      12
Chordless      69
CLIQUE      27
complete      27 86
Con$(L)$      41
Concurrent iteration      45
Concurrently enabled      57
Cone      140
Confluent      86
Connected      41
Consistently regular      39
Covering      63
Critical pair      86
Dependence alphabet      12
Dependence relation      12
Elementary step      13
Existentially regular      39
Foata normal form      13
Forbidden cycle      81
Free partially commutative      12
Generated subtrace      19
Hasse diagram      15
Ind$(l)$      19
Independence relation      12
Irr$(S)$      109
Irreducible      86
Labelled acyclic graph      14
Lexicographic normal form      14
Local description      68
Local morphism      59
Locally confluent      86
M$\ddot{o}$bius function      95
Marking      57
Max$(t)$      16
Min$(t)$      16
Minimal critical pair      87
Noetherian      21
Normalized      88
Orientation      94
Pre$(l)$      19
Proper divisor      20
Protocol      137
Quasi-reconstructible      69
Rational expressions      37
Rational languages      37
Recognizable      38
Reconstructible      69
Red $(S)$      109
Replacement system      109
Semi — Thue system      85
Step sequence      29
Strictly separated      117
Subnet      65
Subtrace      17
Suf$(l)$      19
system      57
Three-colored graph      81
Trace      12
Trace monoid      12
Transition-bounded      65
uniform      49
Weak product      27
Weight function      90
Weight-reducing      90
Word problem      85
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте