Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Nijenhuis A., Wilf H.S. — Combinatorial Algorithms: For Computers and Calculators
Nijenhuis A., Wilf H.S. — Combinatorial Algorithms: For Computers and Calculators



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Combinatorial Algorithms: For Computers and Calculators

Авторы: Nijenhuis A., Wilf H.S.

Аннотация:

This book can be read at several levels. Those whose only need is to use one of the computer programs can turn immediately to those pages and satisfy their wants. Thus, on one level, this is a collection of subroutines, in FORTRAN, for the solution of combinatorial problems.
At the other extreme, pure mathematicians with no need of computer programs will find much that is new and hopefully interesting in these pages. For example, in the special section Deus ex Machina (pp. 78-87), the random selection algorithms of Chapters 10, 12, and 29 are shown to be manifestations of a general phenomenon which sheds light on a number of seemingly unrelated threads of research in combinatorial analysis.
Between these two extremes is a rapidly growing category of (frequently youthful) persons who have access to a fancy calculator (hand-held or table-top). They may not be interested in either the de tailed mathematics or the FORTRAN programs - yet we hope they will find much to stimulate them and help them prepare their own programs.
Our hope, however, is that many readers will want to follow the entire road from general mathematics to particular mathematics to informal algorithm to formal algorithm to computer program and back again, which occurs in virtually every chapter of the book.
Our other hope is that readers will view these methods and programs as a beginning set of building blocks for their own kit of tools and will go on to add to these tools to meet their own needs, so that the contents of this book will be not a collection of pretty artifacts to be looked at but basic elements of the growing and working equipment of scientific investigation and learning.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second edition

Год издания: 1978

Количество страниц: 302

Добавлена в каталог: 14.11.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Arrays, hidden      8
Arrays, policies      8—9
Backtrack method      240—245
Balls-in-cells model      47—48 52
Bell number      94
Binary tree      180
Breadth-first search      161
Bumping algorithm      85
Capacity      196
Categories of usage      3
Cayley's theorem      261
Chi-square test      24
Chromatic polinomial      178—186
Chromatic polinomial, factorial form      290
Chromatic polinomial, tree      180
Coloring, graph      178 246
Combinatorial family      100
composition      65 105
Composition, next      46—51
Composition, power series      187—195
Composition, random      52—53
Connected component      158
Connectivity      158
Connectivity edge      199
Covering relation      234
Cycle, permutation      144—149
Cycle, product      151—155
Decoding      106 113—115
Delete-and-identify algorithm      181
Depth-first search      160 240—245
Dilworth number      198
Edge connectivity      199
Encoding      293
Equivalence relation      89
Euler circuit      148 249—250
Euler identity      73
Euler number      104
Exheap program      141
Factorization, unique      80
Flow      197
Flow, admissible      197
Frobenius construction      86
Generator, group      55
Gray code      14—17
Greedy algorithm      283
Group      55
HAMILTON CIRCUIT      256—257 289
Hamilton walk      15 55
Heap      136
Heapsort      136—140
Hook      118
Hook formula      124
Hook formula, proof      127
I/O/W/B      5—6
Incidence matrix      218
Inclusion-exclusion      221
Inverse function      191 195
Inverse permutation      146
Inversion matrix      226 236
Inversion permutation      146
Inversion table      57
Kirchhoff law      197
KZ-net      199
Latin rectangle      218
Lexicographic sequence, combinatorial family      102
Lexicographic sequence, k-subset      27—38
Lexicographic sequence, partition      66—273
Lexicographic sequence, subset      17—18
Lexicographic sequence, Young tableau      120
Loop-free program      68
Marriage theorem      199
Matching      198
Matrix, entries (0-1)      199
Matrix, renumber      150—157
Max-flow-min-cut theorem      198
Maximal chain      235
Memoryless codes      19 34 59
Menger theorem      201
Moebius function      228 233—239
MTC      6
Network      196—216
Network, flow problem      197
Newton form, polynomial      171—177
NEX programs      3 6
Next algorithm      3 6 102 293
Next algorithm, composition      46—51 292
Next algorithm, equivalence      88—92 292
Next algorithm, fc-subset      26—38
Next algorithm, memoryless      19 31 34 59
Next algorithm, multisubset      291
Next algorithm, object      101—103
Next algorithm, partition, integer      65—71
Next algorithm, partition, plane      84
Next algorithm, partition, set      88—92 292
Next algorithm, permutation      54—61
Next algorithm, subset      13—22
Next algorithm, Young tableau      117—132
Off-line algorithm      159
On-line algorithm      159
Partially ordered set      100 200 228 233—239
Partition of integer      78
Partition of integer, largest part k      105
Partition of integer, next      65—71
Partition of integer, random      72—77
Partition of set, k classes      103
Partition of set, next      88—92
Partition of set, random      93—98
Permanent      217—225
Permutation, adjacent      56 260
Permutation, cycle      144
Permutation, inverse      146
Permutation, inversion table      57
Permutation, k cycles      104
Permutation, k runs      104
Permutation, next      54—61
Permutation, product      151—157
Permutation, random      62—64
Permutation, signature      57 144
Permutation, Trotter algorithm      56
Plane partition      81—87
Poisson distribution      290
Polynomial, chromatic      178—186
Polynomial, factorial form      172
Polynomial, Newton form      171
Polynomial, Taylor expansion      173
Power series      187—195
Power series, inversion      191
Prefab      79—81
Prefab, random      80
Preflow      200
PRIMES      79
Proper coloring      178
Pruefer correspondence      268
RAN programs      7
Random algorithm      2 4 7
Random algorithm, composition      52—53
Random algorithm, k-subset      39—45 291
Random algorithm, number      7
Random algorithm, object      80—81 101—109
Random algorithm, partition, integer      72—77
Random algorithm, partition, set      93—98
Random algorithm, permutation      62—64
Random algorithm, subset      23—25
Random algorithm, unlabeled rooted tree      274—282
Random algorithm, Young tableau      117—132
Rank      101
Ranking algorithm      99—116
Recursive algorithm      15 28 56 99—116 283
Rencontre number      218
Replication      80
Revolving door algorithm      28—32
Run, permutation      104
Ryser formula      221—222
Selection algorithm      99—116
Sequencing algorithm      99—116
Sign, permutation      144
Sorting      135—143
Sorting, topological      229
Spanning forest      158—170
Spanning tree      262—263
Spanning tree, minimal      283—287
Specification list      5
Stirling number      174—186 270
Subset      103
Subset, next      13—22 26—38
Subset, random      23—25 39—45
Synthesis      79—81
System of distinct representatives      198
Tag algorithm      145
Taylor expansion coefficient      172
Terminal vertex      249
Transposition      54 145
Transposition, adjacent      56
Tree, chromatic polynomial      180
Tree, labeled      267—273
Tree, minimum spanning      283—287
Tree, rooted      274—282
Tree, spanning      262—263
Tree, unlabeled      81
Trotter algorithm      56
Tutte polynomial      181
Unrank      99—116
Van der Waerden conjecture      220
Vector subspace      104
Young tableau      117—132
Young tableau, combinatorial family      119
Young tableau, hook      118
Young tableau, random      123
Young tableau, sequencing      120
Zeta matrix      228 233
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте