|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Hayes W.D., Probstein R.F. — Hypersonic Flow Theory |
|
|
Предметный указатель |
Method of integral relations 214—226
Metric for coordinate system of boundary layer type 169
Metric for coordinate system of boundary layer type 169
Meyer R.E. 253 273 277
Meyer, R.E. 253 273 277
Meyer, R.E. 253, 273, 277
Mikhailova M.P. 36
Mikhailova, M.P. 36
Mikhailova, M.P. 36
Milne-Thomson L.M. 151 158
Milne-Thomson, L.M. 151 158
Milne-Thomson, L.M. 151, 158
Mitchell A.R. 226 228
Mitchell, A.R. 226 228
Mitchell, A.R. 226, 228
Mixed flow problem 202 203
Mixed flow problem 202, 203
Moeckel W.E. 16 18 19 174 195 210 232 258
Moeckel, W.E. 16 18 19 174 195 210 232 258
Moeckel, W.E. 16, 18, 19, 174, 195, 210, 232, 258
Mollier diagram 17—19
Mollier diagram 17—19
Momentum equation for boundary layer 289 291
Momentum equation for boundary layer 289, 291
Momentum equation for boundary layer, integrated form of 317 319—322
Momentum equation for boundary layer, integrated form of 317, 319—322
Momentum tensor in Newtonian flow 118 119 134
Momentum tensor in Newtonian flow 118, 119, 134
Momentum thickness 317 319
Momentum thickness 317, 319
Momentum thickness, dimensionless 317—322
Momentum thickness, dimensionless 317—322
Moore L.L. 295
Moore N.B. 352
Moore, L.L. 295
Moore, L.L. 295
Moore, N.B. 352
Moore, N.B. 352
Morrissette R.R. 79
Morrissette, R.R. 79
Morrissette, R.R. 79
Munk M.M. 268
Munk, M.M. 268
Munk, M.M. 268
Nagakura T. 360 365 366
Nagakura, T. 360 365 366
Nagakura, T. 360, 365, 366
Nagamatsu H.T. 299 307 353 359 360
Nagamatsu, H.T. 299, 307, 353, 359, 360
Nagaraatsu, H.T. 299 307 353 359 360
Naruse H. 360 365 366
Naruse, H. 360 365 366
Naruse, H. 360, 365, 366
Navier — Stokes equations 385—389
Navier — Stokes equations 385—389
Navier — Stokes equations, as model in intermediate regimes 386 387
Navier — Stokes equations, as model in intermediate regimes 386, 387
Navier — Stokes equations, simplified for stagnation region 388
Navier — Stokes equations, simplified for stagnation region 388
Navier-Stokes equations 385—389
Navier-Stokes equations, as model in intermediate regimes 386 387
Navier-Stokes equations, simplified for stagnation region 388
Neice S.E. 30 41 42
Neice, S.E. 30 41 42
Neice, S.E. 30, 41, 42
Newman D.J. 233—241
Newman, D.J. 233—241
Newman, D.J. 233—241
Newton I. 24 70—74 93 95 397 404 407
Newton — Busemann pressure law 74 78 243
Newton — Busemann pressure law 74, 78, 243
Newton — Busemann pressure law for slender bodies 105
Newton — Busemann pressure law in thin shock layer calculation 180
Newton — Busemann pressure law, for slender bodies 105
Newton — Busemann pressure law, in thin shock layer calculation 180
Newton — Busemann pressure law, modified 239 242 243 251
Newton — Busemann pressure law, modified 239, 242, 243, 251
Newton — Busemann pressure law, three-dimensional 119
Newton — Busemann pressure law, three-dimensional 119
Newton's minimum resistance body 72
Newton's minimum resistance body 72
Newton's model for perfect gas 71
Newton's model for perfect gas 71
Newton, I. 24 70—74 93 95 397 404 407
Newton, I. 24, 70—74, 93, 95, 397, 404, 407
Newton-Busemann pressure law 74 78 243
Newton-Busemann pressure law, for slender bodies 105
Newton-Busemann pressure law, in thin shock layer calculation 180
Newton-Busemann pressure law, modified 239 242 243 251
Newton-Busemann pressure law, three-dimensional 119
Newtonian bodies without cross flow 80
Newtonian bodies without cross flow 80
Newtonian chine strip 108 109
Newtonian chine strip 108, 109
Newtonian constant-pressure layers 89—91 109 120
Newtonian constant-pressure layers 89—91 109, 120
Newtonian flow theory 10 48 74—138
Newtonian flow theory 10, 48, 74—138
Newtonian flow theory applications 139 243
Newtonian flow theory applications 139, 243
Newtonian flow theory applications in constant-density solutions 142 143 148 156 162
Newtonian flow theory applications in viscous layer analysis 393
Newtonian flow theory applications, in constant-density solutions 142 143 148 156 162
Newtonian flow theory applications, in constant-density solutions 142, 143, 148, 156, 162
Newtonian flow theory applications, in viscous layer analysis 393
Newtonian flow theory applications, in viscous layer analysis 393
Newtonian flow theory applications, to thin shock layers 173 178
Newtonian flow theory applications, to thin shock layers 173, 178
Newtonian flow theory, anomalous results in 75 89 113 117 120 138
Newtonian flow theory, anomalous results in 75, 89, 113, 117, 120, 138
Newtonian flow theory, composite bodies in 80
Newtonian flow theory, composite bodies in 80
Newtonian flow theory, locus of entering streamlines in see "Locus of entering streamlines"
Newtonian flow theory, locus of entering streamlines in see “Locus of entering streamlines”
Newtonian flow theory, momentum in shock layer in 78 118 119
Newtonian flow theory, momentum in shock layer in 78, 118, 119
Newtonian free layers 83 85—88
Newtonian free layers 83, 85—88
Newtonian free layers in proper optimum shapes 98
Newtonian free layers in unsteady flow 138
Newtonian free layers, compared with constant -energy solution 64 85 86
Newtonian free layers, compared with constant -energy solution 64, 85, 86
Newtonian free layers, compared with constant-energy solution 64 85 86
Newtonian free layers, correctness of concept of 86—88
Newtonian free layers, correctness of concept of 86—88
Newtonian free layers, in proper optimum shapes 98
Newtonian free layers, in proper optimum shapes 98
Newtonian free layers, in unsteady flow 138
Newtonian free layers, in unsteady flow 138
Newtonian free layers, reimpingement of 88 89 120 138
Newtonian free layers, reimpingement of 88, 89, 120, 138
Newtonian free layers, relation to sail 90 91
Newtonian free layers, relation to sail 90, 91
Newtonian free layers, three-dimensional 117 120
Newtonian free layers, three-dimensional 117, 120
Newtonian optimum shapes 93—109
Newtonian optimum shapes 93—109
Newtonian optimum shapes with lift 107 108
Newtonian optimum shapes, absolute 93—97 105
Newtonian optimum shapes, absolute 93—97, 105
Newtonian optimum shapes, maximum drag body 109
Newtonian optimum shapes, maximum drag body 109
Newtonian optimum shapes, proper 93 97—105
Newtonian optimum shapes, proper 93, 97—105
Newtonian optimum shapes, with lift 107 108
Newtonian optimum shapes, with lift 107, 108
Newtonian pressure law (uncorrected) 48 73 74
Newtonian pressure law (uncorrected) 48, 73, 74
Newtonian pressure law (uncorrected) empirical nature of 74 243
Newtonian pressure law (uncorrected) modified 74 242 243 251
| Newtonian pressure law (uncorrected), empirical nature of 74 243
Newtonian pressure law (uncorrected), empirical nature of 74, 243
Newtonian pressure law (uncorrected), modified 74 242 243 251
Newtonian pressure law (uncorrected), modified 74, 242, 243, 251
Newtonian sail 90—92
Newtonian sail 90—92
Newtonian sail, three-dimensional 119 120
Newtonian sail, three-dimensional 119, 120
Newtonian separation point 82 86—89
Newtonian separation point 82, 86—89
Newtonian separation point, difficulty near 177—179
Newtonian separation point, difficulty near 177—179
Newtonian shock line 116 117
Newtonian shock line 116, 117
Newtonian simple shapes 81—84
Newtonian simple shapes 81—84
Newtonian structure models 75—77
Newtonian structure models 75—77
Newtonian thrust cowl 96 97 106
Newtonian thrust cowl 96, 97, 106
Noncatalytic wall 288 310
Noncatalytic wall 288, 310
Normal accommodation coefficient 398 401
Normal accomodation coefficient 398 401
Normal accomodation coefficient 398, 401
Number density see "Distribution function"
Number density see “Distribution function”
Nusselt number 297 299 300 see "Stanton
Nusselt number in constant-pressure solutions 297
Nusselt number in cooled turbulent boundary layers 332
Nusselt number in frozen solutions 311
Nusselt number in locally similar solutions 307 309
Nusselt number in Pr = 1 solutions 307 308
Nusselt number in stagnation point solutions 300—304
Nusselt number see also “Heat transfer to body, Stanton number”, 297, 299, 300
Nusselt number, in solutions 307 308
Nusselt number, in solutions 307, 308
Nusselt number, in constant-pressure solution 297
Nusselt number, in constant-pressure solution 297
Nusselt number, in cooled turbulent boundary layers 332
Nusselt number, in cooled turbulent boundary layers 332
Nusselt number, in frozen solutions 311
Nusselt number, in frozen solutions 311
Nusselt number, in locally similar solutions 307 309
Nusselt number, in locally similar solutions 307, 309
Nusselt number, in stagnation point solutions 300—304 Heat Stanton
Nusselt number, in stagnation point solutions 300—304
Ogive of revolution with Kogan's method 283
Ogive of revolution with shock-expansion method 275 276
Ogive of revolution with tangent-cone method 281
Ogive of revolution, small-disturbance solution for 49 51
Ogive of revolution, small-disturbance solution for 49, 51
Ogive of revolution, with Kogan's method 283
Ogive of revolution, with Kogan's method 283
Ogive of revolution, with shock-expansion method 275 276
Ogive of revolution, with shock-expansion method 275, 276
Ogive of revolution, with tangent-cone method 281
Ogive of revolution, with tangent-cone method 281
Oguchi H. 365 374
Oguchi, H. 356 374
Oguchi, H. 365, 374
Oliver R.E. 206 242 243
Oliver, R.E. 206 242 243
Oliver, R.E. 206, 242, 243
Oppenheim A.K. 409 414
Oppenheim, A.K. 409 414
Oppenheim, A.K. 409, 414
Optimum shapes in Newtonian flow see "Newtonian optimum shapes"
Optimum shapes in Newtonian flow see “Newtonian optimum shapes”
Optimum shapes in real gases 106 109
Optimum shapes in real gases 106, 109
Original flow 340
Original flow 340
Oscillating flat plate in Newtonian flow 135—137
Oscillating flat plate in Newtonian flow 135—137
Oswatitsch K. 24 30 41
Oswatitsch similitude 24 41 72
Oswatitsch similitude 24, 41, 72
Oswatitsch, K. 24 30 41
Oswatitsch, K. 24, 30, 41
Pallone A.J. 53
Pallone, A.J. 53
Pallone, A.J. 53
Pan L.J. 342
Pan, L.J. 342
Pan, L.J. 342
Parabolic shock solutions of Chester 152 159 173
Parabolic shock solutions of Chester 152, 159, 173
Parabolic shock solutions, other 231
Parabolic shock solutions, other 231
Particle trajectories for general stagnation point 127 163
Particle trajectories for general stagnation point 127, 163
Penner S.S. 288 297
Penner, S.S. 288 297
Penner, S.S. 288, 297
Perfect gas 13 37
Perfect gas 13, 37
Perfect gas, density ratio in 14
Perfect gas, density ratio in 14
Perfect gas, hypersonic similitude with 40
Perfect gas, hypersonic similitude with 40
Perfect gas, Newton's model 71
Perfect gas, Newton's model 71
Perfect gas, Newton's model for 71
Perfect gas, ratio of specific heats in 13 18
Perfect gas, ratio of specific heats in 13, 18
Persh J. 328 330
Persh, J. 328 330
Persh, J. 328, 330
Perturbation methods for boundary layers 312 346—349 357 358
Perturbation methods for boundary layers 312, 346—349, 357, 358
Piston theory 35 46 67 68
Piston theory 35, 46, 67, 68
Plane ogive with Kogan's method 283
Plane ogive with tangent-wedge method 280
Plane ogive, small-disturbance solution for 48 49
Plane ogive, small-disturbance solution for 48, 49
Plane ogive, with Kogan's method 283
Plane ogive, with Kogan's method 283
Plane ogive, with tangent-wedge method 280
Plane ogive, with tangent-wedge method 280
Pohlhausen parameter 319
Pohlhausen parameter 319
Polynomial approximation 231
Polynomial approximation 231
Power series expansions in boundary layer theory 322—325
Power series expansions in inverse problem 230 231
Power series expansions, in boundary layer theory 322—325
Power series expansions, in boundary layer theory 322—325
Power series expansions, in inverse problem 230 231
Power series expansions, in inverse problem 230, 231
Prandtl number 290
Prandtl number 290
Prandtl number influence in constant-pressure solutions 295 297
Prandtl number influence in cooled turbulent boundary layers 331 332
Prandtl number influence in frozen solutions 311
Prandtl number influence in hypersonic solutions 305
Prandtl number influence in locally similar solutions 307
Prandtl number influence in stagnation point solutions 301—303
Prandtl number influence, in constant-pressure solutions 295 297
Prandtl number influence, in constant-pressure solutions 295, 297
Prandtl number influence, in cooled turbulent boundary layers 331 332
Prandtl number influence, in cooled turbulent boundary layers 331, 332
Prandtl number influence, in frozen solutions 311
Prandtl number influence, in frozen solutions 311
Prandtl number influence, in hypersonic solutions 307
Prandtl number influence, in hypersonic solutions 307
Prandtl number influence, in locally similar solutions 307
Prandtl number influence, in locally similar solutions 307
Prandtl number influence, in stagnation point solutions 301—303
|
|
|
Реклама |
|
|
|
|
|
|