Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Birkhoff G.D. — Dynamical Systems
Birkhoff G.D. — Dynamical Systems



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Dynamical Systems

Àâòîð: Birkhoff G.D.

ßçûê: en

Ðóáðèêà: Ôèçèêà/Äèíàìè÷åñêèå ñèñòåìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1966

Êîëè÷åñòâî ñòðàíèö: 305

Äîáàâëåíà â êàòàëîã: 07.12.2004

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Analyticity of solutions      12—14
Ascoli      4
Asymptotic motion to periodic motions      211—212 227—237
Asymptotic motion to recurrent motions      205—206
Billiard ball problem      169-79
Billiard ball problem for ellipse      248—255
BLISS      1
Bohr      220
Bolza      35 37
Brouwer      148 234
Cantor, G.      194
Central motions      190—197 202—204
Central motions, special      202—204
Central motions, transitivity and intransitivity of      205—208
Characteristic surface      129
Chazy      260
Clausius      iii
Closed geodesics      130 135—139
Closed geodesics on a special closed surface      244—245
Closed geodesics on convex surfaces      135—139
Closed geodesics on open surfaces      132—134
Closed geodesics on symmetric surfaces      130—132
Conservation of energy      14—19
Conservative systems      14—19
Conservative systems, change of variables      19—21
Conservative systems, subject to constraints      22
Contact transformations      53—55
Continuity theorems      6—10 10—12
coordinates      14—15
Cosserat, E. and F.      14
Degrees of freedom      14
Dissipative systems      31—32
Energy      23—25
Equations of variation      10 57—58
Equilibrium problem      59 60 67—71
Equilibrium problem, Hamiltonian case of      74—85
Equilibrium problem, Pfaffian case of      89—94
EQUIVALENCE      56
Euler      35
Existence theorem      1—5 10—12
External forces      14—15
Formal group      60—63
Formal solutions      63—67
Formal solutions, containing a parameter      143
Galileo      iii
Generalized equilibrium      60
Generalized equilibrium, Hamiltonian case of      85—89
Generalized equilibrium, normal form for      71—74
Generalized equilibrium, Pfaffian case of      94—96
Generalized equilibrium, reduction to      97—100
Geodesics      38—39 180—188
Geodesics in a transitive case      238—248
Geodesics in an integrable case      248—255 (see also “Closed geodesies”)
Goursat      1
hadamard      iv 128 130 170 211 238
Hamilton      iii
Hamiltonian principal function      52
Hamiltonian systems      50—53
Hamiltonian systems, Lagrangian and      50—53
Hamiltonian systems, normal forms of      74—85 85—89
Hamiltonian systems, transformations of      53—55
Hamilton’s principle      34—36
hilbert      130
Hill      iii 139 260
Ignorable coordinates      40—44
Index of invariant point      176
Instability      105 220—231
Instability, zones of      221—226
Integrability      255—259
Integral of energy      18 52
Integral of energy in the problem of three bodies      261—263
Integral of energy, conditional linear      45—47
Integral of energy, linear in velocities      44—45
Integral of energy, quadratic      48—50
jacobi      iii 170 248
Koopman      145
Lagrange      iii 263 264 278 285
Lagrangian systems      18—19
Lagrangian systems, external characterization of      25—31
Lagrangian systems, Hamiltonian and      50—53
Lagrangian systems, integrals of      41—50
Lagrangian systems, internal characterization of      23—25
Lagrangian systems, normal form of      39—40;
Lagrangian systems, reduction of order of      40—41
Lagrangian systems, regular      25
Lagrangian systems, transformation of      36—39
Laplace      iii
Lebesgue      248
Levi — Civita      iv 270 273 275
Liapounoff      122
Liouville      48
Lipschitz      5
Manifold of states of motion      143
Manifold of states of motion in problem of three bodies      270—275 283—288
Mass      23
Morse      139 170 238 246 247
Multipliers      74
Multipliers, Hamiltonian      74—78;
Multipliers, Pfaffian      89—91
Newton      iii
Non-energic systems      18
Osgood      4 138
Painleve      261
Particle      23—25
Particle in force field      124—128 146—149
Periodic motions      59
Periodic motions, analytic continuation of      139—143
Periodic motions, minimal type of      133—139
Periodic motions, minimum type of      128—132
Periodic motions, near a periodic motion      159—165
Periodic motions, near generalized equilibrium      150—154
Periodic motions, obtained by the transformation method      143—149
Periodic motions, role of      123—124;
Periodic motions, simple and multiple      142
Periodic motions, stable and unstable      209—215
Pfaffian systems      55
Pfaffian systems, generalized equilibrium of      97—100
Pfaffian systems, instability of      105
Pfaffian systems, multipliers of      89—91
Pfaffian systems, normal form of      91—96
Pfaffian systems, stability of      100—104
Pfaffian systems, variational principle for      55
Picard      1 13 105 122
Poinca.e      iii 74 97 105 123 139 143 190 194 223 237 255 257 260 288
Poincare’s geometric theorem      165—169
Poincare’s geometric theorem, application of      150—88
Principal function of conservative systems      17
Principle of least action      36—39
Principle of reciprocity      26
Problem of three bodies      260—261
Problem of three bodies, collision in      267—270
Problem of three bodies, equations of      261—262
Problem of three bodies, generalization of      291—292 (see also “Restricted Problem of Three Bodies”)
Problem of three bodies, integrals of      262—263
Problem of three bodies, Lagrange’s equality in      264—265;
Problem of three bodies, manifold of states of motion in      270—275 283—288;
Problem of three bodies, properties of motions of      275—283 288—291
Problem of three bodies, reduction of      263—264 283-284;
Problem of three bodies, Sundman’s inequality in      265—267;
Quasi-periodic motions      218—220
Rayleigh      iii 26
Recurrent motions      198—201 204—205 223—224
Restricted problem of three bodies      145 171 260
Reversibility      27 115
Reversibility and stability      115—121
Rotation number      184
Signorini      130
Solution      2
Stability      97—122
Stability of Hamiltoman and Pfaffian systems      97
Stability of Hamiltoman in case of two degrees of freedom      220—227
Stability of Hamiltoman in the sense of Poisson      174 190 197
Stability of Hamiltoman, complete      105—115
Stability of Hamiltoman, criterion of      226—227
Stability of Hamiltoman, permanent      121
Stability of Hamiltoman, problem of      121 227
Stability of Hamiltoman, reversibility and      115-120
Stability of Hamiltoman, unilateral      122;
State of motion      1
Surface of section      143—145
Surface of section, local      151—152
Suudman      iv 260 261 265 270 278 283
Systems with one degree of freedom      19
Systems with two degrees of freedom      19
Systems with two degrees of freedom, integrals of      45—50
Systems with two degrees of freedom, motions of      150—185 209—255
Systems with two degrees of freedom, normal form for      39—40
Transitivity      205—208
Uniqueness theorems      5—6 10—12
Variational principles of dynamics      34—39 55—58
Variational principles, algebraic      33—34
Voss      14
Wandering motions      190—195
Weierstrass      261
Whittaker      iv 25 55 89 130 132 162 170 248 284
Work      14
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå