Авторизация
Поиск по указателям
Ghez R. — A Primer of Diffusion Problems
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Primer of Diffusion Problems
Автор: Ghez R.
Аннотация: A Primer of Diffusion Problems A Primer of Diffusion Problems is a concise and lively introduction to diffusion theory in its many guises and to a variety of analytical and numerical methods for the solution of diffusion problems. It discusses the diffusion equation, the steady state, diffusion under external forces, time-dependent diffusion, and similarity, thus bridging mathematical and physical treatments of diffusion. Featured topics include a careful development of the oxidation theory of silicon, properties of the family of error functions, precipitation and phase transformations, a concise introduction to Laplace transforms, and nonlinear boundary conditions. Exercises are found throughout the text, and appendices treat rarely found advanced topics.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 1st edition
Год издания: 1988
Количество страниц: 243
Добавлена в каталог: 16.08.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Arrhenius behavior of diffusivity 90 205
Arrhenius behavior of mobility 90
Arrhenius behavior of reaction constants 52 53
Asymptotic behavior of Laplace transforms 188—190 197 198
Asymptotic behavior of solutions 116 152 161 162—163 197 198 200 237—239
Asymptotic expansions 107 119 123 206
Beta function, definition 186
Beta function, use of 160 186—187 218
Boundary conditions, Dirichlet 18 117 129 143 154 157 185—186
Boundary conditions, far-field condition 65 93 118 143—144
Boundary conditions, for BCF model 76
Boundary conditions, for precipitation 65 150
Boundary conditions, from local thermodynamic equilibrium 61—62
Boundary conditions, in numerical methods 18—19 23
Boundary conditions, linear in time 125—126
Boundary conditions, Neumann 19 117 129 159
Boundary conditions, radiation 208
Capillarity, capillary length 59 69
Capillarity, Gibbs — Thomson effects 59 232—233
Capillarity, Laplace’s law 56
Chemical potential, constancy of 42 56
Chemical potential, dependence on concentration 59 153
Chemical potential, in Gibbs — Duhem relation 55
Chemical potential, relation to Gibbs free energy 87
Conservation laws, at fixed boundaries 10—11 111
Conservation laws, at variable boundaries see "Stefan conditions"
Conservation laws, for numerical schemes 23
Conservation laws, for random walk 3 224
Conservation laws, the continuity equation 7 28 37 85 226 228
Constitutive relations, anisotropic 227
Constitutive relations, Fick’s 7
Constitutive relations, Fourier’s 31
Constitutive relations, in general 37—38 153
Constitutive relations, Newton’s 32
Constitutive relations, Ohm’s 34
Convection and drift velocity 33 36 85
Convolution theorem, proof of 184—185
Convolution theorem, use of 185—187 196 209
Decay lengths, Debye length 94
Decay lengths, diffusion distance 105 108
Decay lengths, mean surface diffusion distance 76
Decay lengths, similarity length scale 135—136 139 140 161—162
Decay lengths, skin depth 194
Delta function, definition 175—177
Delta function, use of 22 178 183 195 212
Diffusivity, anisotropic 226
Diffusivity, estimate of 7 8 90
Diffusivity, in general fields 90 91
Diffusivity, kinematic viscosity 32
Diffusivity, surface 75
Diffusivity, thermal 31
Diffusivity, variable 8 9 153 156
Einstein’s, relation 87 90
Einstein’s, summation convention 225
Error functions, definition 102 106 120
Error functions, properties 102 106 121—124
Flux, continuous form 6 27 85 228
Flux, discrete form 2 83 223
Flux, energy 31 117 193
Gamma function, definition 118
Gamma function, properties 118—119
Gamma function, use of 120 121 160 171 186 190
Gibbs see "Capillarity" "Chemical "Phase
Green’s function for Dirichlet conditions 185—186
Green’s function for finite differences 25—26
Green’s function for linear oscillator 183—184
Green’s function for Neumann conditions 197 209
Green’s function in infinite domain 99—100
Growth kinetics, BCF model 76
Growth kinetics, crystal growth 76 114—115 127
Growth kinetics, oxidation 51
Growth kinetics, precipitation 66—67 150—151
Heating problem 117 193
Heaviside’s step function, definition 169
Heaviside’s step function, use of 170 172 175 178 179 199 201
Hermite polynomials, definition 236
Hermite polynomials, use of 139 179 236—238
Impurity redistribution in a half space 103—105 180—182
Impurity redistribution in a sphere 146—149
Initial conditions for error function solution 102 106
Initial conditions for gaussian solution 100
Initial conditions for numerical methods 18
Initial conditions for oxidation 51
Initial conditions for precipitation 67 151
Initial conditions, nonconstant 182
Initial conditions, relation to Boltzmann’s transformation 143—145
Interpolation 5 84 213—214 225
Invariance of diffusion equation, relation to similarity 135—136
Invariance of diffusion equation, under affine transformations 14 38
Irreversibility 14 23 38
Jump frequency, anisotropic 83 223
Jump frequency, estimate of 89
Jump frequency, in master equation 4
Jump frequency, isotropic 1
Liebnitz’s rule 11
Mean curvature 56 59—60 63—64 231
Mobility, estimate of 90
Mobility, for charged particles 33 90
Mobility, in general fields 86
Modulus, definition 17
Modulus, relation to random walk 99
Modulus, stability condition 20
Moments, calculation of 101 120 163 236
Moments, definition 235
Moments, expansions in 237 238
Newton’s Law of Cooling 208
Newton’s law of viscous friction 32
Nonlinear diffusion, Stefan problems 113 140 149
Nonlinear diffusion, through boundary conditions 212
Nonlinear diffusion, through diffusivity 8 9 43 153 156
Nucleation, critical radius of 67 69 73
Nucleation, process 62 72
Numerical methods for derivatives 16
Numerical methods for the diffusion equation 17—21
Numerical methods for Volterra integral equations 213—217
Phase rules, proof of 229 231
Phase rules, use of 58 64 111 232
Point source solution for numerical scheme 21—25
Point source solution of power-law diffusion 159
Point source solution, gaussian solution 99—100
Random walk in higher dimensions 223
Random walk, anisotropic 83
Random walk, fitting 97
Random walk, isotropic 1
Random walk, relation to central limit theorem 99
Sampling 15 213 235
Sources and sinks, as boundary conditions 48 117 195
Sources and sinks, in the diffusion equation 32 35 74 194
Starting solutions for integral equations 219
Starting solutions for the diffusion equation 146 149
Stefan conditions for crystal growth 74 127
Stefan conditions for oxidation 49
Stefan conditions for precipitation 66
Stefan conditions, at phase boundaries 11 114 150
Stefan Problem see "Nonlinear diffusion"
Supersaturation, absolute 68 115 127 151
Supersaturation, due to temperature ramping 127
Supersaturation, relation to critical radius of nucleation 67 69
Supersaturation, relation to step distance 73 77
Supersaturation, relative 68 73 77 127
Symmetries see "Invariance"
Symmetries, affine 14 38
Symmetries, geometrical 28—29 135
Symmetries, rotational 30 43
Temperature schedule 125 204
Thermodynamic, equilibrium 2 41 56 229
Thermodynamic, local equilibrium 12 61—62 64 111 112 113 230 231
Thermodynamic, reservoirs 57 232
Thermodynamic, variables 58 229 231
Transition frequency see "Jump frequency"
Реклама