Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics
Aris R. — Vectors, Tensors and the Basic Equations of Fluid Mechanics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Vectors, Tensors and the Basic Equations of Fluid Mechanics

Автор: Aris R.

Аннотация:

Introductory text for engineers, physicists and applied mathematicians applies mathematics of Cartesian and general tensors to physical field theories, demonstrating them chiefly in terms of the theory of fluid mechanics. Many exercises throughout the text. Index. Preface. Appendixes.


Язык: en

Рубрика: Физика/Классическая физика/Механика жидкости и газа/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1989

Количество страниц: 314

Добавлена в каталог: 18.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stokes' theorem in a surface      223
Stokes, G.G.      61
Strain: in a surface      230
Strain: principal rates of      92
Strain: rate of      88
Strain: rate of, in converted coordinates      187
Strain: surface, connection with surroundings      237
Stream function      126
Stream tube      80
streamline      79—82
Stress      99
Stress, direct      105
Stress, in a surface      231
Stress, local equilibrium of      100
Stress, physical components of: in cylindrical polar coordinates      181
Stress, physical components of: in spherical polar coordinates      181
Stress, principal axes of      105—106
Stress, rate of doing work      117
Stress, shear      105
Stress, tensorial character      99—101
Summation convention      136
Summation convention, Cartesian      9
Surface curl      223
Surface divergence      223
Surface motion, intrinsic equations of      233
Surface tension      231 234
Surface: closed      44
Surface: continuity with surroundings      235
Surface: curve in      219
Surface: curve in, principal normal of      220
Surface: developable      221
Surface: differential operators in      222
Surface: first fundamental form of      213
Surface: mean curvature of      218—221
Surface: normal curvature of      220
Surface: normal to      214
Surface: piece-wise smooth      44
Surface: reducible      44
Surface: second fundamental form of      216
Surface: simply connected      44
Surface: smooth      44
Surface: third fundamental form of      217
Synge, J.L.      175
Tensor: absolute, definition of      144
Tensor: addition      147
Tensor: anholonomic components of      159
Tensor: antisymmetric      22
Tensor: antisymmetric, vector of      24
Tensor: associated      147
Tensor: Cartesian: higher order      28
Tensor: Cartesian: second order      21
Tensor: Cartesian: symmetric      21
Tensor: characteristic equation of      27
Tensor: characteristic values of      27 151
Tensor: conjugate metric, of a surface      197
Tensor: conjugate second order      22
Tensor: contraction of      147
Tensor: covariant derivative of      168
Tensor: deformation      89
Tensor: deformation, invariants of      92
Tensor: deformation, physical interpretation of      89—91
Tensor: derivative of      38
Tensor: differentials of      160
Tensor: hybrid, definition of      212—213
Tensor: informal definition of      5
Tensor: inner product of      147
Tensor: invariants of      26
Tensor: isotropic      22 30—34 146
Tensor: isotropic, of fourth order      180
Tensor: metric      142
Tensor: metric, of a surface      196
Tensor: order of      144
Tensor: outer product of      147
Tensor: physical components of      156
Tensor: rank of      144
Tensor: rate of strain      89
Tensor: relative, definition of      144
Tensor: second order, symmetric, principal directions of      151
Tensor: stress      101 107
Tensor: stress, symmetry of      102 123
Tensor: stress, viscous      105
Tensor: surface, definition of      194
Tensor: symmetric, canonical form of      25
Tensor: symmetry of      147
Tensor: velocity gradient      89
Torque stress      103
Torque, body      103
Toupin, R.      7 82 86 97 112
Transformation, inverse      138
Transformations, group of      138
Triple scalar product      18
Triple vector product      19
Truesdell, C      7 37 61 73 74 82 86 94 95 97 112 133 157 175 191 192
Unit Cartesian vector      13
Vector field      51
Vector field, abnormality of      72
Vector field, Beltrami      65 72 73
Vector field, classification of      63
Vector field, complex lamellar      64
Vector field, curl of      55 169
Vector field, divergence of      53 169
Vector field, Helmholtz representation of      70
Vector field, irrotational      57 65—67
Vector field, lamellar      64
Vector field, Laplacian      65
Vector field, parallel      161
Vector field, representation of      63
Vector field, solenoidal      54 67—69 88
Vector field, Trkalian      65 73
Vector operator $\nabla$      51
Vector product      16
Vector: angle between      149
Vector: axial      36
Vector: base      151
Vector: base, reciprocal      152
Vector: Cartesian: basis      13
Vector: Cartesian: condition for coplanarity      13
Vector: Cartesian: definition of      8 10
Vector: Cartesian: length of      10
Vector: characteristic      151
Vector: contravariant, definition of      140
Vector: covariant, definition of      141
Vector: informal definition of      3
Vector: length of      149
Vector: multiplication      23
Vector: physical components of: in nonorthogonal coordinate systems      155
Vector: physical components of: in orthogonal coordinate systems      153
Vector: surface, direction of      198
Vector: surface, length of      198
Vector: unit      11 149
Velocity      39
Velocity potential      125 130 132
Velocity, in a surface      227
Velocity, physical components of      177
Viscosity: bulk, coefficient of      112
Viscosity: shear, coefficient of      111
Volume: composite      48
Volume: elementary      48
Vortex lines      95
Vortex tubes      95
Vorticity      95
Vorticity, connection between viscosity and      114
Weight of a relative tensor      144
Weingarten's formulae      218 223
Weiss, P.      54
Wilson, E.B.      36
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте