Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Nilsson N.J. — Problem-Solving Methods in Artificial Intelligence
Nilsson N.J. — Problem-Solving Methods in Artificial Intelligence



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Problem-Solving Methods in Artificial Intelligence

Àâòîð: Nilsson N.J.

ßçûê: en

Ðóáðèêà: Computer science/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 255

Äîáàâëåíà â êàòàëîã: 05.07.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$P_1$ refutations      227 229
15-puzzle      3
15-puzzle, graph of      4 5
15-puzzle, history of      12
15-puzzle, nondeterministic program for      20—27
15-puzzle, operators      4
15-puzzle, states      4
8-puzzle, evaluation functions for      56 66
8-puzzle, examples of solution, breadth-first search of      45—17
8-puzzle, examples of solution, depth-first search of      50 52
8-puzzle, examples of solution, ordered search of      55—57 66—68
8-puzzle, operators for      20—21
8-puzzle, rewriting rules for      20—21
8-queens problem      41(2—5) 92
Action schedules      112
Admissibility of A*      59—61
Admissibility of ordered—search algorithm for AND/OR trees      131—130
Admissibility of search algorithms      59
Advice taker      11 213—214
Algebra, solving word problems in      212
Algorithm A*      59
Algorithm A* (cont’d), admissibility of      59—61
Algorithm A* (cont’d), efficiency of      62
Algorithm A* (cont’d), optimality of      61—65
Alpha-beta procedure, alpha cutoffs in      145
Alpha-beta procedure, alpha values in      145
Alpha-beta procedure, beta cutoffs in      145 147
Alpha-beta procedure, beta values in      145
Alpha-beta procedure, combined with ordering procedure      148—149
Alpha-beta procedure, efficiency of      147—148
Alpha-beta procedure, example of      146
Alpha-beta procedure, for searching game trees      140—149
Alpha-beta procedure, history of      152
Alphabetic variants      174
Ancestor, in graphs      22—23
Ancestry filter criterion      221—222 229
Ancestry filter criterion, completeness of      220—223
Ancestry-filtered form (AFF)      219—223 229
Ancestry-filtered form (AFF), interpretation as a state-space search problem      231(8—5)
AND nodes in AXD/OR graphs      87
AND/OR graphs, AND nodes in      87
AND/OR graphs, cycles in      123—124
AND/OR graphs, definition of      83 87—88
AND/OR graphs, depth of a node in      124
AND/OR graphs, examples of      88 89
AND/OR graphs, for geometry problem      100
AND/OR graphs, for Grundy’s game      111
AND/OR graphs, for monkey-and-bananas problem      108
AND/OR graphs, for symbolic integration problem      96
AND/OR graphs, OR nodes in      87
AND/OR graphs, representation by nondeterministic programs      90—93
AND/OR graphs, search graph of      118
AND/OR graphs, search methods for      123—120
AND/OR graphs, solved nodes in      88—89
AND/OR graphs, to represent games      110 113
AND/OR graphs, unsolvable nodes in      90 117
AND/OR trees, as game trees      110 113 137
AND/OR trees, breadth-first search of      119—121
AND/OR trees, costs of solutions      120—128
AND/OR trees, definition of      119
AND/OR trees, depth-first search of      121—123 124
AND/OR trees, evaluation functions for searching      128—133
AND/OR trees, generalizing search methods so they apply to AND/OR graphs      123—126
AND/OR trees, merit functions for searching      151
AND/OR trees, node selection in      136
AND/OR trees, optimality of search methods for      136
AND/OR trees, ordered-search algorithm for      130—131 132 133
AND/OR trees, search methods for      119—155
AND/OR trees, tip nodes of      128
Answer extraction in program writing      201—205
Answer extraction, example      189—191
Answer extraction, literature on      213
Answer extraction, process of complete description of      191—201
Answer extraction, process of summary of      199—200
Answer extraction, unification set in      192
Answer statements      190—191
Answer statements containing Skolem functions      197—198
Answer statements derived from wffs containing universally quantified variables      196—198
Answer statements, general form of      195—196
Answer statements, nonuniqueness of      201
Applicability wffs in applications of predicate calculus to state-space problem solving      206—209
Arcs, cost of      46 48 126
Arcs, definition in graphs      22—23
Arcs, irrevocable      40(2—2)
Arrays, rewriting rules for      20—21
Artificial evolution      9
Artificial intelligence, approaches to      9—10
Artificial intelligence, definition of      vii—viii 1 114(4—5)
Artificial intelligence, overviews of      9
Artificial intelligence, surveys of      12
Artificial neurons      9
Assignment statement in nondeterministic programs      25
atom      174
Atomic formulas      15S
Attention control in searching AND/OR trees      151
Backtrack programming      75
Backtracking in depth-first search      49 76
Base clause      219
Bidirectional search      76
Blind search      44
Branch and bound methods      11 76
Branch and bound methods, example of      77(3-3)
Branches in nondeterministic programs      25 91—93
Branching factor, effective      73 74
Breadth-first search applied to S-puzzle      45—47
Breadth-first search in resolution theorem proving      217
Breadth-first search of AND/OR trees, algorithm for      119—121
Breadth-first search of AND/OR trees, flow chart for      120
Breadth-first search of state-space graphs      45—47
Breadth-first search of state-space graphs, algorithm for      45
Breadth-first search of state-space graphs, flow chart for      46
Checkers program      151 153
Chess programs      152—153
Choice functions in nondeterministic programs      38
Chromosome matching problems      11
Clause form      165—168
clauses      165—168
Clauses, factors of      178
Clauses, negative      227
Clauses, positive      227
Combined strategies in resolution theorem proving      227
Completeness of resolution      181—183
Completeness of resolution, relative to a model      225—226
Completeness of resolution, relative to ancestry filter      220—223
Completeness of set-of-support      223—224 226—227
Conjunction of wffs      161 162
Conjunctive normal form      167 see
Consistency assumption      63
Construction lines in geometry theorem proving      102—103
Constructive proofs      188
Control problems as examples of state-space problem solving      33—34
Control theory, state spaces in      10 33—34
Correctness of nondeterministic programs      38
Correctness of programs      39 213
Costs of arcs      46 48 126
Costs of solutions in AND/OR trees      126—128
Cycles in searching AND/OR graphs      123—124
Davis — Putnam procedure      1S4
DEDUCOM      212
Delete and add rules      207
Depth of a node      48—49 53 124
Depth of a refutation      180
Depth ratio      77
Depth-first search applied to S-puzzle      50 52
Depth-first search heuristics for      53—54
Depth-first search of AND/OR trees      121—124
Depth-first search of AND/OR trees, algorithm for      123
Depth-first search of AND/OR trees, flow chart for      122
Depth-first search of state-space graphs      4S—50
Depth-first search of state-space graphs, algorithm for      50
Depth-first search of state-space graphs, flow chart for      51
Descendant in graphs      22—23
Diagram, use in geometry theorem proving      100—102
Differences, history of use      112—113
Differences, in monkey-and-bananas problem      105—109
Differences, in problem reduction      105—109
Disagreement set in unification algorithm      177
Disjunctions of wffs      162
Distribution problems as example of state-space problem solving      30—32
Distribution problems, literature on      39
Domains in predicate calculus      159
Dynamic ordering, use in searching game trees      149
Dynamic programming      75
Effective branching factor      73 74
Efficiency of search algorithms      62 72—75 147—148
Empty clause      175
Equality in predicate calculus      183—184
Evaluation functions as used in game trees      138
Evaluation functions as used in heuristic search      54—55
Evaluation functions as used in searching AND/OR trees      128—133
Evaluation functions in resolution theorem proving      229—230
Evolution, artificial      9
Existential quantifiers      163
Existential quantifiers, elimination of      166—167
Existential quantifiers, realization of, in answer extraction      189—201
Expansion of nodes in graphs      44 117
Explicit graphs      23
Factor of a clause      174
Failure nodes      172
Fewest-components strategy in resolution theorem proving      228
Fixed-ordering search procedure      148—149
Flow charts for breadth-first search      46 120
Flow charts for depth-first search      51 122
Flow charts for nondeterministic programs      24 91
Flow charts for ordered search      132
Flow charts for uniform cost search      49
Flow problems      see Distribution problems
Formalization for state-space problem solving      209—212
Frame problem      212
Function letters      158
Functional composition in program writing      201—205
Game trees as AND/OR trees      110 113 137
Game trees, alpha-beta search of      140—149
Game trees, definition of      110
Game trees, minimax search of      137—140
Game trees, search of      137—150
Game trees, search of using dynamic ordering      149
Game trees, search of using fixed ordering      148—149
Game trees, static evaluation functions for      138
Games as example problems      3
Games, books about      12
Games, Grundy’s      110—112 113
Games, Last One Loses      114(4—6)
Games, legal moves in      110
Games, solution by problem-reduction approach      109—112
Games, solution of      137—150
Games, tic—tac—toe      139—143 154(5—6)
General Problem Solver (GPS)      10 113
General problem solver (GPS), method of operation      103—109
Geometry theorem proving      97—103
Geometry theorem proving, adding construction lines in      102—103
Geometry theorem proving, literature on      112
Geometry theorem proving, use of diagram in      100—102
Geometry theorem proving, use of models in      100—102
GO, program for      153
Goal nodes      23
Goal states      22
Goal wff      206
Grammar in syntax analysis      28—30
Graphs, refutation or proof      180—182
Ground instance      168 176
Grundy’s Game      110—112 113
Herbrand base      169—170
Herbrand procedures      184
Herbrand universe      168—169
Herbrand’s theorem      172n
Heuristic function in AND/OR tree-search algorithms      128—131
Heuristic function in state-space search algorithms      58—59
Heuristic function, role in determining heuristic power      65—68
Heuristic information possessed by a search algorithm      62
Heuristic information to focus or reduce search      44 53—54
Heuristic information, uses of      53—54
Heuristic power      54
Heuristic power, role of heuristic functions in determining      65—68
Heuristic search      44 53—54
Heuristics, miscellaneous      71—72 136—137
Implementations of theorem-proving programs      230
Implication signs, elimination of      165
Implicit graphs      23
Inference nodes      174—175
Information retrieval      2 see
Integration, symbolic      11 93—97 112 114(4—5)
Intelligence of computers      8
Intelligence, definition of      2
Intelligence, theory of      2
Interpretations      see Models in predicate calculus
Introspection in design of problem solvers      9—10
Irrevocable arcs      40(2—2)
Kalah, programs for      153
Kalah, use for comparing strategies      152
Kalah, use of dynamic ordering in      149
Key operators      104—105
Last One Loses (game)      114(4—6)
Learning by machine      viii
Learning strategies      151
Legal moves in games      110
Level bound in unit-preference strategy      228
Level of a refutation      180
Literal      168
Logic in problem solving      6—7 156—157 187—216
Logic, higher-order      154
Logic, second-order      184 see
Logic-theory (LT) machine      13(1—4) 112
Logical connectives in predicate calculus      158
M & N procedure, literature on      152
Mac Hac, chess program      152—153
Mass spectrograph analysis problems      11
Matrix of a wff      167
Max prist of AND/ON solution trees      126—127
Meaning (semantics) of predicate calculus      157 159—161
Means-ends analysis      113
Merges in resolution theorem proving      224 229
Merit functions      151 see
Minimax procedure for searching game trees      137—140
Minimax procedure, example using tic—tac—toe      139—140 141—143
Minimax procedure, improvements on      150 152
Missionanes-and-cannibals problem      39
Model strategies in resolution theorem proving      224—227 229
Model strategies, completeness of      225—226
Models in predicate calculus      159 171—172 224—225
Modus ponens as an instance of resolution      179
Monkey-and-bananas problem, AND/OR graph for      108
Monkey-and-bananas problem, as illustration of applications of predicate calculus      206—212
Monkey-and-bananas problem, as illustration of problem-reduction approach      105—109
Monkey-and-bananas problem, as illustration of state-description schemas      35—37
Monkey-and-bananas problem, as illustration of use of differences      105—109
Monkey-and-bananas problem, graph for      37
Multilated checkerboard problem      41(2—7)
Multiple      150
Narrows in a search space      85 103—109
Natural language, processing of      2 12
Natural language, translation of      188—189 212
Negative clauses      227
Neurons, artificial      9
Nodes, AND      87
Nodes, definition in graphs      22—23
Nodes, depth of      48—40 53 124
Nodes, expansion of      44 117
Nodes, failure      172
Nodes, goal      23
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå