Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Orlando T.P., Delin K.F. — Foundations of Applied Superconductivity
Orlando T.P., Delin K.F. — Foundations of Applied Superconductivity



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Foundations of Applied Superconductivity

Àâòîðû: Orlando T.P., Delin K.F.

Àííîòàöèÿ:

The goal of this text was to use language common to electrical engineers. For this reason, our approach emerges from the concepts encountered in classical electromagnetism. This allows us to discuss the highly interdisciplinary topic of superconductivity in a meaningful way while simultaneously requiring only a modest physics background from the student.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1991

Êîëè÷åñòâî ñòðàíèö: 612

Äîáàâëåíà â êàòàëîã: 04.07.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Magnetization $\mathbf{M}$, average $\tilde{\mathbf{M}}$      357
Magnetization $\mathbf{M}$, critical state      377—381
Magnetization $\mathbf{M}$, energy density      108 187 282 283
Magnetization $\mathbf{M}$, thermodynamic $\mathcal{M}$      348 351—352 389p
Magnetoquasistatics (MQS)      37—39 41—53 151
Magnets applications of      10—14
Magnets applications of, materials used in      10
Magnets applications of, type II superconductors      353—356 358 382—383
Materials, superconducting      see Superconducting materials
Matter waves      221 394
Maxwell’s equations      26—27 92—93
Mean free path $l_{tr}$      243 528 530
Meissner state      4 66—68 172 177 260
Meissner, W.      4
Method I and Method II      179—187 216p
Method of images      195 277 387p
Microscopic quantum model      514—527 (see also BCS theory)
Models of superconductivity      7—9 (see also BCS theory Classical Ginzburg-Landau Macroscopic Microscopic
Modified Bessel functions      268—269 563—565
Muller, K.A.      6
Multiply connected superconductors      83—87 245—246
Nonlocal electrodynamics      529
Normal state of electrons and superconductivity      see Two-fluid model)
Normal state of electrons, conductivity      53—56 452
Normal state of electrons, time constants      205
Normal-superconducting phase boundary      290 295
Ochsenfeld, R.      4
Ohmic conductor      40 146
Ohm’s Law      31
Order of phase transition      292
Order parameter      495
Penetration depth $\lambda$      62 143 495
Penetration depth $\lambda$, anisotropic      123 125—128 304 312
Penetration depth $\lambda$, clean limit      535
Penetration depth $\lambda$, dirty limit      535
Penetration depth $\lambda$, Josephson      432
Penetration depth $\lambda$, London penetration depths      62 535 542
Penetration depth $\lambda$, perpendicular      214p
Penetration depth $\lambda$, temperature dependence      95
Perfect conductivity as engineering approximation      46—47 57—58
Perfect conductivity infinite dc conductivity      11 17 537
Perfect conductivity model of      58—61
Perfect conductivity versus superconductivity      4 66—68
Perfect diamagnetism      see Meissner effect)
Permeability $\mu$      31
Permittivity $\epsilon$      31
Persistent currents      12 86—87
phase diagram      see Critical magnetic fields
Phase of quantum mechanical wavefunction      228 (see also Josephson phase-current and phase-voltage relations Gauge-invariant and
Phase of quantum mechanical wavefunction in macroscopic quantum model      236
Phase transitions      288 292
Phonons      see Electron-lattice interaction)
Pinning of vortices      368—383
Planck’s constant      222
Plasma frequency Josephson      438
Plasma frequency Josephson, normal state      151 210p
Plasma frequency Josephson, superconducting $\omega_{p}^{*}$      146—150
Poisson’s equation      517
Poynting’s theorem      107 137p 182
Probability current density      229 233
probability density      227
Quality factor Q      478
Quantization of fluxoid      245
Quantized vortices      see Vortex
Quantum interference      410—414 (see also SQUIDs)
quantum mechanics      220—233
Quasiparticle tunneling      453
Quasistatic criterion      32—33 205
Quasistatics      32—35 (see also Electroquasistatics and Magnetoquasistatics)
Quenching      374
Reservoir, thermodynamic      285
Resistance in superconductors at finite frequency      98—102 113
Resistance in type II superconductors      see Flux flow resistance
Resistive transition      3
Resistively shunted junction (RSJ)      458
resistivity      see Conductivity
Ring, superconducting      249—251 441p 442p
Rubber sheet model      128 139 305—307 316
Scalar potential      231
Scalar potential, magnetic      48 174
Scattering of electrons      243 528 529 530
Scattering of superelectrons      54 55 57—59 529
Schrieffer, J.R.      8 249 527
Schrodinger’s equation      220—227 242 254p 257p 400
Screening length      521
Second law of thermodynamics      285 288
Second London equation      see London equations
Sign of the electron’s charge      55
Skin depth      44 62
Slab driven by a current source, critical currents      503—505
Slab driven by a current source, normal metal      72p
Slab driven by a current source, superconductor      138p 503—505
Slab in a parallel magnetic field, critical magnetic fields      290 323p
Slab in a parallel magnetic field, critical state model      375—383
Slab in a parallel magnetic field, normal metal      42—47 108—111
Slab in a parallel magnetic field, perfectly conducting      46—47 61—68
Slab in a parallel magnetic field, superconductor      78—80
Slab in a parallel magnetic field, vortex in      293—295 322p 323p 387p
Specific heat      see Heat capacity
Sphere in a magnetic field, normal metal      47—51
Sphere in a magnetic field, perfectly conducting      47—51 67 176—177 178
Sphere in a magnetic field, superconductor      67 81 131p 178
Squids      410—420 424 471—474
Stewart — McCumber parameter, $\beta_{c}$      459
Stokes’s theorem      28
Sum rule      540 554p
Superconducting materials      575—577 (see also High-temperature superconductors)
Superconducting materials, $La_{1.85}$, $Ba_{0.15}$, $CuO_{7}$      6
Superconducting materials, $NbSe_{2}$      114
Superconducting materials, $Nb_{3}Ge$      5 372
Superconducting materials, $Nb_{3}Sn$      5 10 213 260 371 372 374
Superconducting materials, $PbMo_{6}S_{8}$      5 6 114
Superconducting materials, $V_{3}Ga$      6
Superconducting materials, $YBa_{2}Cu_{3}O_{7}$      6 114 213
Superconducting materials, Al      456
Superconducting materials, Bi      259
Superconducting materials, CuS      6
Superconducting materials, Hg      3
Superconducting materials, Nb      5 213
Superconducting materials, Nb — Ti      5 6 10 200 372 374
Superconducting materials, Pb      259 395 466
Superconducting materials, Pb — Bi      6 259
Superconducting materials, W      5
Supercurrent equation      236 238 242 393 402 441p
Superelectrons      8 94
Superelectrons, attractive potential for      523—527
Superelectrons, charge      8 248
Superelectrons, current density      96 236
Superelectrons, density      228 491 497
Superelectrons, mass      8
Superelectrons, near vortex core      264—267 309—311
Superelectrons, tunneling      394—398
Superelectrons, velocity      236 264 309 529—534
Surface barrier field $H_{s}$      339
Surface current      29
Surface energy      509—513
Surface impedance      111 113
Surface nucleation field $H_{c}$3      507
Thermodynamic critical field $H_{c}$      4 289 290 297—303
Thermodynamics      281—291 (see also Gibbs free Thermodynamics energy Helmholtz Lower Upper and
Thermodynamics and energy density of superconductor      289
Thermodynamics, anisotropic      315 317
Thermodynamics, Ginzburg — Landau      494
Thermodynamics, size effects      323p 324p
Thermodynamics, temperature dependence      289
Time constants, capacitive $\tau_{RC}$      21
Time constants, characteristic      205 206
Time constants, charge relaxation $\tau_{e}$      36 208p
Time constants, coupling t$\tau_{LC}{$      21
Time constants, electric      see Charge relaxation)
Time constants, electromagnetic $\tau_{lm}$      33 39 57—59
Time constants, inductive $\tau_{RL}$      21
Time constants, Josephson $\tau_{J}$      459 476
Time constants, magnetic      see Magnetic diffusion)
Time constants, magnetic diffusion $\tau_{m}$      38
Time constants, ordering of time constants      22—26 57—59 477
Time constants, rise $\tau_{rise}$      476 477 487p
Time constants, scattering $\tau_{tr}$      54 55 57—59 243
Time constants, steering $\tau_{str}$      476 481—482
Time constants, superconducting $\tau_{s}$      531
Time constants, superconducting channel $\tau_{chan}$      101—102 138p 146
Time constants, turn-on $\tau_{turn-on}$      476 478
Time invariant system      19
Transfer function      19
Transformer, flux      88—89
Transition temperature $T_{c}$      see Critical temperature
Transmission lines      160—172 211p
Transmission lines and Josephson junctions      437
Transmission lines, normal state      162 170 171
Transmission lines, superconducting      160—172 170 171 212p
Transmission lines, TEM mode approximation      157 160—161 211p
Tunnel junctions      see Josephson tunnel junctions
Tunneling      255p 394—398
Tunneling, normal state resistance      452—453
Tunneling, superconducting      see Josephson tunnel junctions
Two-fluid model      94—104 149
Two-fluid model, frequency dependence      98 143 145 146
Two-fluid model, temperature dependence      96 100 554p
Type I and type II superconductors      7 259 297—303 513
Upper critical field $H_{c2}$      5 260 295 296—297
Upper critical field $H_{c2}$, anisotropy      314—315 317
Upper critical field $H_{c2}$, in Ginzburg — Landau theory      505—507
Upper critical field $H_{c2}$thin film      551p 544p
Vector identities      557
Vector potential      230
Velocity of superelectrons      236 264 309 529—534
Velocity of superelectrons, critical velocity near vortex core      264—266 309—310
Vortex      261
Vortex force on      332 334 338 339 362
Vortex, and fluxoid quantization      262—263
Vortex, anisotropic      303—318 390p
Vortex, array      261—262 273 295—297 344-352
Vortex, boundary effects      336—340
Vortex, core model      264 267 549p 550p
Vortex, current density of      263—264 271 273 308
Vortex, energy      279 280 326p 331 388p
Vortex, energy of single vortex $\varepsilon_{v}$      280 388p
Vortex, experimental observation      262
Vortex, Gibbs free energy      293—295 335 361 390p
Vortex, interaction between      331—324
Vortex, magnetic field of      270 273 306
Vortex, magnetization      348 351—352
Vortex, modified London equations for      272
Vortex, motion      see Flux flow resistance)
Vortex, motion, number of flux quantum per vortex      261—263 388p
Vortex, surface barrier field $H_{s}$      339
Vortex, viscosity      368
Vortex, vorticity      272 313
Wave equation, electromagnetic      143 157 163 215p
Wave equation, Josephson junctions      437 446p
Wave equation, quantum mechanical      224 226 227 242
Wave-particle duality      221 254p
Waveguides      see Transmission lines
Wavelength      see Electromagnetic wavelength)
Weakly coupled superconducting structures      405 507—509
Wu, M. — K.      6
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå