Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Antman S.S. — Nonlinear Problems of Elasticity
Antman S.S. — Nonlinear Problems of Elasticity



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Nonlinear Problems of Elasticity

Àâòîð: Antman S.S.

Àííîòàöèÿ:

Within the past few decades, there has been an accelerating development of methods for studying nonlinear equations. Nonlinear analysis offers exciting prospects for certain specific areas of nonlinear problems with continuum mechanics. The objective of this book is to carry out such studies for problems in nonlinear elasticity. This book is directed toward scientists, engineers, and mathematicians who wish to see careful treatments of uncompromised problems. The author's aim is to retain the orientation toward fascinating problems that characterizes the best engineering texts on structural stability while retaining the precision of modern continuum mechanics and employing powerful methods of nonlinear analysis. The author's approach is to lay down a general theory for each kind of elastic body, carefully formulate specific problems, introduce the pertinent mathematical methods, and then conduct rigorous analyses of the problems.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Êëàññè÷åñêàÿ ôèçèêà/Óïðóãèå ñðåäû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1995

Êîëè÷åñòâî ñòðàíèö: 750

Äîáàâëåíà â êàòàëîã: 17.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Past history      18 417
Perturbation methods      33—42 166—170 511—521 528
Phase changes      529—530
Piola — Kirchhoff stress tensor first      404—408
Piola — Kirchhoff stress tensor reactive      427
Piola — Kirchhoff stress tensor second      406—407
Piola — Kirchhoff stress vectors      533 534
Piola — Kirchhoff traction vector      407
Plastic deformation and strain, permanent      605—606
Plastic loading      606
Plasticity      603—628
Plasticity, constitutive equations for      604—615 621—623
Plasticity, discrete models for      624—628
Plates      see also “Shells”
Plates, buckling of      348—354 361—363 578—581
Poincare shooting method      41 680
Poincare, H.      vii
Poisson's ratio      592
Polar decomposition theorem      394—396
Polyconvexity      464
Position field      386
Positive-definiteness      5 373
Post-buckling behavior, definition of      171
Potential energy for rods in space      313
Potential energy for rods in the plane      228 245—247
Potential energy for strings      21 44 46 64 82
Potential energy for three-dimensional bodies      171 458—459
Power      442 (also see “Virtual Power”)
Poynting effect      329
Prerequisites      1—2
Preservation of orientation      see “Orientation”
Pressure      428 (also see “Hydrostatic pressure”)
Principal axes of strain      390
Principal invariants of a tensor      377
Principal planes of shear      390
Principal stretches      390
Projection of a linear operator      672
Prufer transformation      178
Puiseux series      681
Quadratic form of a tensor      373
Quasiconvexity      464
Quasilinearity      6
Radial motions of a string      77—78
Radial motions of an incompressible shell      523
Radial motions of an incompressible tube      521—522
Range of a function      3
Rank-one convexity      461
Rankine — Hugoniot jump conditions      29 634
Rarefaction      635—638
Rate independence, constitutive functions with      605—607
Rate-type, material of      419
Reactive stress      427 540
Reeken's problem for whirling strings      185—189
Reference configuration of a rod in space      261
Reference configuration of a rod in the plane      85
Reference configuration of a string      12
Reference configuration of a three-dimensional body      385
Reference configuration of a three-dimensional rod-like body      265 535
Reference configuration of a three-dimensional shell-like body      565—566
Reflexive Banach space      235 238 239 669
Regularity      see “Bootstrap method”
Representation theorems for hemitropic and isotropic functions      438—441
Resultant couple      see under “Couple”
Riemann invariants      631
Riemann problem      634—640
Riemann — Christoffel curvature tensor      393
Right Cauchy — Green deformation tensor      388
Right-handedness of basis      4
Rigid material      388 417 424
Rigid motions, invariance under      see “Invariance”
Rings under hydrostatic pressure      101—116 218—222 253—256
Rivlin, R.S.      vii
Rods, asymptotic theories of      559—564
Rods, Cosserat theories of      85—96 259—323 540—554 558—559
Rods, general theories of      322—323 531—554 558—559
Rods, induced theories of      531—554
Rods, intrinsic theories of      558—559
Rods, lateral buckling of      339—342
Rods, linear theories of      319—321
Rods, necking of      554—558
Rods, problems for      96—123 200—226 254—256 325—342 554—558
Rods, special Cosserat theories of      85—96 259—323
Rods, St. Venant's Principle for      559—564
Rods, theory of, in space      259—323 531—547
Rods, theory of, in the plane      85—96 318—319 548—554
Rods, under hydrostatic pressure      101—116 218—222 227—230 245—251 254—256
Rods, under terminal loads      96—101 125—131 160—166 168—170 197 215 337—339
Rods, validity of theories of      548
Rods, whirling of      116—123 222—226 251 253
Rotation tensor      394—396
Rotatory inertia, neglect of      319
Schauder fixed-point theorem      696
Second law of thermodynamics      444—445
Section of a rod, material      86 265 535
Semi-inverse problems of elasticity      470—511 521—527
Semicontinnity, lower      236—237
Semilinearity      6
Sets, basic definitions      7
Shear force for rods      90 101 263
Shear force for shells      345
Shear instability      135
Shear of an elastic block      480—488
Shear of an elastic cylinder      470 479
Shear strain for rods      88 261 272 275
Shear strain for three-dimensional bodies      388—389
Shear waves      525—527 649—658
Shear, principal planes of      390
Shear, simple      396—397
Shells, asymptotic theories of      591—598
Shells, circular plates      348—363
Shells, Cosserat theories of      568—572 581—589
Shells, cylindrical      367—368
Shells, general theories of      565—572
Shells, induced theories of      565—572
Shells, intrinsic theories of      581—589
Shells, Kirchhoff theory of      588—589
Shells, problems for      348—370 578—581
Shells, special Cosserat theories of      571—572 581—589
Shells, spherical      364—367
Shells, theory of, for axisymmetric deformations      343—347 572—578
Shells, under edge loads      348—363 367—368
Shells, under hydrostatic pressure      364—367 369
Shells, von Karman equations for plates      591—598
Shocks      632—640 645—649
Signorini, A.      vii
Simple materials      418
Simple zero      163
Simultaneous zeros      366—367
Singularities of solutions of elasticity problems      529
Singularity theory      202—203 207—208 520—521 681
Skew tensor      372
Skw      373
Smoothness      4
snapping      138 362
Sobolev spaces      9 236 238 667
Solution branch      221
Solution pairs      61—62 128 152
Solution sheets      208—215
Spatial formulation      387 450—455
Spatial strain tensor      452
Special Cosserat theory of rods      259—323
Spectral representation of a symmetric tensor      375
Spectrum      152
Spherical coordinates, problems in      363—367 399 488—503 523
Spin tensor      452
springs      79—83
St. Venant's principle      530 559—564
Stability, adjacent equilibrium, criterion of      171
Stability, by the energy criterion      171
Stability, elastic      171
Stability, in the sense of Lyapunov      170—171
Stability, infinitesimal      171
Statical determinacy and indeterminacy      215
Steady motions, definition of      453
Stokes theorem      382
Stored (internal, strain) energy for induced theories of rods      547 553
Stored (internal, strain) energy for membranes      590—591
Stored (internal, strain) energy for rods in space      282—283 296 312—313 559
Stored (internal, strain) energy for rods in the plane      92 117 205 227—230 235 245—247 250 254—256 643
Stored (internal, strain) energy for shells      586
Stored (internal, strain) energy for strings      21 44 78 81—82
Stored (internal, strain) energy for three-dimensional bodies      428 458 478 658
Strain energy      see “Stored energy”
Strain rates for rods      272—275
Strains for axisymmetric shells      344
Strains for rods in space      260—261 272—275
Strains for rods in the plane      88
Strains for shells      583
Strains for three-dimensional bodies      387—394 451—452
Stress resultants      also see “Contact force” “Contact
Stress resultants for induced theories of rods      537—538 542—547
Stress resultants for induced theories of shells      566—567 569—571 574
Stress tensor, active      427
Stress tensor, Cauchy      454
Stress tensor, dissipative part of      447
Stress tensor, engineering      407
Stress tensor, extra      427
Stress tensor, first Piola — Kirchhoff      404—408
Stress tensor, reactive      427 537 540
Stress tensor, second Piola — Kirchhoff      407—408
Stretch for rods      88 272 275
Stretch for strings      13
Stretch for three-dimensional bodies      388
Stretch, principal      390
Stretching tensor      452
Strings, elementary problems for      49—84
Strings, equations for      11—48
Strings, holding liquids      71—74
Strings, radial vibrations of      77—78
Strings, steady motions of      78—79
Strings, transverse motions of      32—33
Strings, under central forces      74—77
Strings, under normal loads      66—74
Strings, under vertical loads      50—66
Strings, whirling of      21
Strong convergence      238 665
Strong Ellipticity Condition      461—463 465—467 545—547
Stuart's problem for whirling strings      189—190
Sturm — Liouville problem      162 178
Sturmian theory      162 178 181
Summation convention      259 371
Support of a function      3
Suspension bridge problem      49—52 64—66
SYM      373
Symmetric tensor      5 372
Symmetry conditions for constitutive equations for rods and shells      97 296 349 551—554 577—578
Symmetry group of a material      437
Symmetry of the stress tensor      406 533
Symmetry transformation      437
Temperature      443
Tension for rods      90 263
Tension for strings      16
Tensors      4 371—383
Tensors of higher order      375
Tensors, adjoint of      372
Tensors, adjugate of      464
Tensors, antisymmetric      372
Tensors, cofactor of      379
Tensors, components of      375 383
Tensors, identity      5 373 383
Tensors, indefinite      373
Tensors, invariants of      377 438—441
Tensors, invertible      373
Tensors, matrix of      375
Tensors, negative-definite      373
Tensors, nonsingular      373
Tensors, orthogonal      373—374
Tensors, positive-definite      5 373
Tensors, product of      372
Tensors, proper-orthogonal      374
Tensors, quadratic form of      373
Tensors, semidefinite      373
Tensors, skew      372
Tensors, spectral representation of      375
Tensors, symmetric      5 372
Tensors, transpose of      372
Tensors, zero      5 373
Test functions      20
Thermoelasticity, constitutive equations of, for strings      17
Thermoelasticity, constitutive equations of, for three-dimensional bodies      448—449
Thermomechanical process      445
Thermomechanics      441—149
Thermoplastic loading      610—611
Thermoplasticity      610—612
Thermoviscoelasticity, constitutive equations of      446—448
Torsion of an elastic block      480—488
Torsion of an elastic cylinder      474—476 479
Torsional strain of a rod      261 272—273 275
Total energy of a membrane      590—591
Total energy of a rod      313
Total energy of a spring-mass system      82
Total energy of a string      21 42
Total energy of a three-dimensional body      443
tr      374
Trace of a tensor      374
Trace, boundary and initial conditions in sense of      14 23—24 410—411
Transport theorem      453
Transpose of a tensor      372
Transverse isotropy      see under “Isotropy”
Transverse motions of a string      32
Travelling waves and shock structure      645—649
Travelling waves in rods      334—337
Travelling waves in strings      33
Travelling waves in viscoelastic media      651—658
Triangle inequality      665
Trivial solution pairs      129 152 355—361
Truesdell, C.      vii
Twist      307
Twisting couple (moment) for rods      263
Uniform rods      97 298—299
Uniform strings      18
Union of sets      7
Uniqueness of solutions in elasticity      460
Universal deformations      506—509
Universal joint      305
Universal motions      523—525
Unshearability      92 102
Variation first      see under “Derivatives and differentials”
Variation second      253—256
Variational characterization of equations for elastic strings      42—46
Variational characterization of equations for hyperelastic elastic rods      227—230 312—313
Variational characterization of equations for hyperelastic membranes      590—591
Variational characterization of equations for three-dimensional hyperelastic bodies      458—459
Vector space      665
Vectors      4—6 371—372 665
Vectors, axial      372—373
Velaria problem      49
Velocity      387
Vertical shear      101
Virtual displacements and velocities      20
Virtual Power (Work), Principle of, for rods      244 308—311 313
Virtual Power (Work), Principle of, for strings      20 22 24—28
Virtual Power (Work), Principle of, for three-dimensional bodies      411—417 533—534 593
Viscoelasticity, constitutive equations of, for longitudinal motion of rods      640—642
Viscoelasticity, constitutive equations of, for rods in space      264 283—285
Viscoelasticity, constitutive equations of, for strings      18
Viscoelasticity, constitutive equations of, for three-dimensional bodies      418—419 649—650
von Karman equations for plates      591—598
Vorticity      452
Wave equation, linear      34—35
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå