Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Imbriale William A. — Large Antennas of the Deep Space Network
Imbriale William A. — Large Antennas of the Deep Space Network



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Large Antennas of the Deep Space Network

Àâòîð: Imbriale William A.

Àííîòàöèÿ:

Detailing the evolution of large parabolic dish antennas and their uses, this volume traces the development of NASA's Deep Space Network antenna, from its inception in 1958 to the present. The analytic and measurement techniques used in design and performance assessment are also discussed. The book is intended as an introduction for students new to the field. Imbriale is a research engineer at the California Institute of Technology's Jet Propulsion Laboratory.


ßçûê: en

Ðóáðèêà: Ôèçèêà/Àñòðîíîìèÿ/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2003

Êîëè÷åñòâî ñòðàíèö: 306

Äîáàâëåíà â êàòàëîã: 17.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
26-Meter S-/X-band conversion project      82—86
26-Meter S-/X-band conversion project, performance measurements      86
26-Meter S-/X-band conversion project, performance predictions      84—86
34-M R&D antenna, Goldstone, California      170—190
34-M R&D antenna, Goldstone, California, antenna design considerations      171—173
34-M R&D antenna, Goldstone, California, bypass beam-waveguide design      181—182
34-M R&D antenna, Goldstone, California, dual-shaped reflector design      187
34-M R&D antenna, Goldstone, California, effect of using DSS-15 main reflector panel molds for DSS-13 panels      187—190
34-M R&D antenna, Goldstone, California, pedestal room optics design      180—181
34-M R&D antenna, Goldstone, California, theoretical performance      182—187
34-M R&D antenna, Goldstone, California, upper-mirror optics design      173—180
34-Meter beam-waveguide operational antennas      225—252
34-Meter beam-waveguide operational, antennas, adding Ka-band to operational 34-m, beam-waveguide antennas      239—252
34-Meter beam-waveguide operational, beam-waveguide design      225—226
34-Meter beam-waveguide operational, initial testing      227—239
34-Meter high-efficiency antenna      157—164; see also Deep Space Station 15: Uranus
34-Meter research and development beamaveguide antenna      167—219
34-Meter research and development beamaveguide antenna, beam-waveguide test facility      168 169
34-Meter research and development beamaveguide antenna, new analytical techniques      168
34-Meter research and development beamaveguide antenna, the new antenna      170—190
70-Meter antennas, study to replace      284—289
70-Meter antennas, study to replace, arraying flat-plate antennas      288—289
70-Meter antennas, study to replace, arraying four 34-m aperture antennas      286—287
70-Meter antennas, study to replace, arraying small antennas      287—288
70-Meter antennas, study to replace, designing new 70-m single-aperture antenna      285—286
70-Meter antennas, study to replace, extending life of existing 70-m antennas      285
70-Meter antennas, study to replace, implementing spherical pair of highefficiency reflecting elements antenna concept      289
Adding Ka-band to operational 34-m BWG antennas      239—252
Adding Ka-band to operational 34-m BWG antennas, Cassini radio science Ka-band ground system      239—248
Adding Ka-band to operational 34-m BWG antennas, Ka-band upgrades—receive-only system      248—252
Analysis techniques for designing reflector antennas      6—40
Antenna Figure of merit (FM)      4
Antenna noise-temperature determination      33—40
Antenna noise-temperature determination, noise temperature in BWG systems      35—40
Antenna noise-temperature properties      4
Antenna research system task      257—280
Antenna research system task, Deep Space Station 27      276—280
Antenna research system task, design of beam-waveguide system      259—262
Antenna research system task, design of transmit feed horn      262—267
Antenna research system task, dual-vane polarizers      273—275
Antenna research system task, receive-system design      268—272
Antenna research system task, uplink arraying      275—276
Aperture gain and efficiency measurements      51—55
ARST      see Antenna Research System Task
ASI/NASA Marconi mission (Agenzia Spaziale Italiana)      290
Beam-waveguide antenna (BWG)      2
Beam-waveguide antenna performance in bypass mode      200—204
Beam-waveguide antenna performance in bypass mode, Ka band measurements      201—204
Beam-waveguide antenna performance in bypass mode, X band measurements      200—201
Beam-waveguide system, design of      259—262
Beam-waveguide systems, techniques for designing      55—62
Beam-waveguide systems, techniques for designing, focal-plane matching      58
Beam-waveguide systems, techniques for designing, Gaussian-beam design      59—60
Beam-waveguide systems, techniques for designing, high-power design      61—62
Beam-waveguide systems, techniques for designing, highpass design      56 58
Beam-waveguide versatility      218—219
BWG antenna performance in bypass mode      200—204
BWG antenna performance in bypass mode, efficiency calibration at 8.45 and 32 GHZ      196
BWG antenna performance in bypass mode, noise temperature      192—195
BWG antenna performance in bypass mode, optimizing G.T ratio of BWG antenna      196—299
BWG antenna performance in bypass mode, X- and Ka-band test packages      190—191
BWG antenna, phase 1 measured results      190—204
BWG antennas      3
BWG systems, noise temperature in      35—40
Bypass beam waveguide, removal of      204—210
Canberra, Australia, DSN in      1
Cassegrain concept      71—72
Cassegrain geometry, factors influencing      72—73
Cassegrain telescope      1
Cassegrain-type feed system, DSCCs and      1
Cassini radio science Ka-band ground system      239—248
Cassini radio science Ka-band ground system, beam-aberration correction      246 248
Cassini radio science Ka-band ground system, measured performance after installation of Ka-band      244—245
Cassini radio science Ka-band ground system, monopulse pointing system      243—244
Cassini radio science Ka-band ground system, optics design      240—242
Deep Space Station 11: Pioneer      71—77
Deep Space Station 11: Pioneer, 26-meter Cassegrain system      74—77
Deep Space Station 11: Pioneer, Cassegrain concept      71—72
Deep Space Station 11: Pioneer, factors influencing Cassegrain geometry      72 73
Deep space station 12: Echo      79—87
Deep space station 12: Echo, 26-meter S-/X-band conversion project      82—86
Deep space station 12: Echo, Goldstone-Apple Valley Radio Telescope project      86 87
Deep space station 12: Echo, S-band Cassegrain monopulse feed horn      81—82
Deep Space Station 13: Venus      89—95
Deep Space Station 13: Venus, dual-mode conical feed horn      93
Deep Space Station 13: Venus, gain calibration      93—95
Deep Space Station 14: Mars      97—150
Deep Space Station 14: Mars, antenna structure      98—101
Deep Space Station 14: Mars, distortion compensation      140—149
Deep Space Station 14: Mars, future interests and challenges      150
Deep Space Station 14: Mars, L-band      120—125
Deep Space Station 14: Mars, reflex-dichroic feed system      114—120
Deep Space Station 14: Mars, S-band (1966)      101—102
Deep Space Station 14: Mars, tricone multiple Cassegrain feed system      106—113
Deep Space Station 14: Mars, upgrade from 64 to 70 meters      125—139
Deep Space Station 14: Mars, X-band, performance at      103—106
Deep Space Station 15: Uranus      157—164
Deep Space Station 15: Uranus, common-aperture feed      158—159
Deep Space Station 15: Uranus, computed versus measured performance      163—164
Deep Space Station 15: Uranus, dual-reflector shaping      159—162
Deep Space Station 27      276—280
Deep-space communications complexes (DSCCs)      1
Designing reflector antennas, analysis techniques for      6—40
Dichroic analysis      29—32
Dichroic design, low-cost      32
DSS-11, 26-meter Cassegrain system      74 77
DSS-24, efficiency measurements      230—234
DSS-24, initial testing of      227—239
DSS-24, microwave holography measurements      229—230
DSS-24, noise-temperature results      235—236
DSS-24, the shroud      236—239
Dual-mode conical feed horn, Venus antenna and      93
Dual-reflector shaping      20—23
Dual-reflector shaping, offset-shaped reflector antennas      23
Dual-reflector shaping, theoretical solution for symmetric case      20—23
Dual-vane polarizers      273—275
Echo antenna      2
Efficiency measurements, aperture gain and      51—53
Fced-hom analysis      14—18
Focal-plane matching, BWG design and      58
Frequency bands allocated to DSN      6
Gain calibration, Venus antenna and      93—95
Gaussian beam design      59 60
Gaussian-beam algorithm      24- 27
Gaussian-beam analysis      6
GAVRT      see Goldstone — Apple Valley Radio Telescope program
Geometric optics (GO)      6
Goldstone — Apple Valley Radio Telescope program      86—87
Goldstone, California, DSN in      1
Heinrich Hertz      6
High-efficiency (HEF) antenna      2
High-power design, BWG systems and      61—62
Highpass BWG design      56—58
Illumination function, reflector antennas, design principles for      5
Interplanetary network      290—291
Ka-band upgrades receive-only system      248—252
Ka-band upgrades receive-only system, BWG geometry      249
Ka-band upgrades receive-only system, demonstration at DSS-26      249—252
Ka-band upgrades receive-only system, X-/X-/Ka-Band feed      248—249
Low-cost dichroic design      32
Madrid, Spain, DSN in      1
Mars Aerostationary Relay Satellite (MARSat)      290
Mars Global Surveyor      290
Mars Odyssey (2001)      290
Measurement techniques      40—55
Measurement techniques, aperture gain and efficiency measurements      51—53
Measurement techniques, microwave holography      45—50
Measurement techniques, noise-temperature measurements      53—55
Measurement techniques, theodolite measurements      40—45
Microwave holography      45—50
Multifrequency operations      210—218
Multifrequency operations, S-band design      213—218
Multifrequency operations, X-/Ka band system      210—213
Next-generation deep space network      283—292
Next-generation deep space network, study to replace 70-meter antennas      284—289
Next-generation deep space network, towards the interplanetary network      290 292
Noise temperature in BWG systems      35—40
Noise-temperature measurements      53—55
Offset-shaped reflector antennas      23
Parabolic dish antennas, evolution of      1—3
Physical optics (PO)      6 7—8
Pioneer Deep Space Station      2
Quasioptical techniques      23—28
Quasioptical techniques, example      27—28
Quasioptical techniques, Gaussian beam algorithm      24—27
Quasioptical techniques, PO technique      24
Quasioptical techniques, ray analysis algorithm      27
R&D antenna      3
Radiation-pattern analysis      7—14
Radiation-pattern analysis, application to dual-reflector antennas      10—11
Radiation-pattern analysis, mathematical details      8 10
Radiation-pattern analysis, numerical example of      13—14
Radiation-pattern analysis, useful coordinate transformations      11—13
Ray analysis algorithm      27
Ray tracing      6
Reeeive-system design      268—272
Reflector antennas, analysis techniques for designing      6—40
Reflector antennas, antenna noise-temperatiure determination      33—40
Reflector antennas, dichroic analysis      29—32
Reflector antennas, dual-reflector shaping      20—23
Reflector antennas, feed-horn analysis      14—18
Reflector antennas, quasioptical techniques      23—28
Reflector antennas, radiation-pattern analysis      7—14
Reflector antennas, spherical-wave analysis      18—20
Removal of bypass beam waveguide      204—210
S-band Cassegrain monopulse feed horn      81—82
Signal processing center (CPS)      1
Signal-to-noise ratio (SNR)      3
Sphcrieal-wave analysis      18—20
Technology drivers      3—6
Technology drivers, allocated frequency bands      6
Theodolite measurements      40—45
Total system-noise temperature      4
Transmit feed horn, design of      262—267
U.S.National Aeronautics and Space Administration (NASA) Deep Space Network (DSN)      1
Uplink arraying      275—276
Venus site, as DSN R&D station      2
Voyager spacecraft, encounter at Neptune      2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå