|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Imbriale William A. — Large Antennas of the Deep Space Network |
|
|
Ïðåäìåòíûé óêàçàòåëü |
26-Meter S-/X-band conversion project 82—86
26-Meter S-/X-band conversion project, performance measurements 86
26-Meter S-/X-band conversion project, performance predictions 84—86
34-M R&D antenna, Goldstone, California 170—190
34-M R&D antenna, Goldstone, California, antenna design considerations 171—173
34-M R&D antenna, Goldstone, California, bypass beam-waveguide design 181—182
34-M R&D antenna, Goldstone, California, dual-shaped reflector design 187
34-M R&D antenna, Goldstone, California, effect of using DSS-15 main reflector panel molds for DSS-13 panels 187—190
34-M R&D antenna, Goldstone, California, pedestal room optics design 180—181
34-M R&D antenna, Goldstone, California, theoretical performance 182—187
34-M R&D antenna, Goldstone, California, upper-mirror optics design 173—180
34-Meter beam-waveguide operational antennas 225—252
34-Meter beam-waveguide operational, antennas, adding Ka-band to operational 34-m, beam-waveguide antennas 239—252
34-Meter beam-waveguide operational, beam-waveguide design 225—226
34-Meter beam-waveguide operational, initial testing 227—239
34-Meter high-efficiency antenna 157—164; see also Deep Space Station 15: Uranus
34-Meter research and development beamaveguide antenna 167—219
34-Meter research and development beamaveguide antenna, beam-waveguide test facility 168 169
34-Meter research and development beamaveguide antenna, new analytical techniques 168
34-Meter research and development beamaveguide antenna, the new antenna 170—190
70-Meter antennas, study to replace 284—289
70-Meter antennas, study to replace, arraying flat-plate antennas 288—289
70-Meter antennas, study to replace, arraying four 34-m aperture antennas 286—287
70-Meter antennas, study to replace, arraying small antennas 287—288
70-Meter antennas, study to replace, designing new 70-m single-aperture antenna 285—286
70-Meter antennas, study to replace, extending life of existing 70-m antennas 285
70-Meter antennas, study to replace, implementing spherical pair of highefficiency reflecting elements antenna concept 289
Adding Ka-band to operational 34-m BWG antennas 239—252
Adding Ka-band to operational 34-m BWG antennas, Cassini radio science Ka-band ground system 239—248
Adding Ka-band to operational 34-m BWG antennas, Ka-band upgrades—receive-only system 248—252
Analysis techniques for designing reflector antennas 6—40
Antenna Figure of merit (FM) 4
Antenna noise-temperature determination 33—40
Antenna noise-temperature determination, noise temperature in BWG systems 35—40
Antenna noise-temperature properties 4
Antenna research system task 257—280
Antenna research system task, Deep Space Station 27 276—280
Antenna research system task, design of beam-waveguide system 259—262
Antenna research system task, design of transmit feed horn 262—267
Antenna research system task, dual-vane polarizers 273—275
Antenna research system task, receive-system design 268—272
Antenna research system task, uplink arraying 275—276
Aperture gain and efficiency measurements 51—55
ARST see Antenna Research System Task
ASI/NASA Marconi mission (Agenzia Spaziale Italiana) 290
Beam-waveguide antenna (BWG) 2
Beam-waveguide antenna performance in bypass mode 200—204
Beam-waveguide antenna performance in bypass mode, Ka band measurements 201—204
Beam-waveguide antenna performance in bypass mode, X band measurements 200—201
Beam-waveguide system, design of 259—262
Beam-waveguide systems, techniques for designing 55—62
Beam-waveguide systems, techniques for designing, focal-plane matching 58
Beam-waveguide systems, techniques for designing, Gaussian-beam design 59—60
Beam-waveguide systems, techniques for designing, high-power design 61—62
Beam-waveguide systems, techniques for designing, highpass design 56 58
Beam-waveguide versatility 218—219
BWG antenna performance in bypass mode 200—204
BWG antenna performance in bypass mode, efficiency calibration at 8.45 and 32 GHZ 196
BWG antenna performance in bypass mode, noise temperature 192—195
BWG antenna performance in bypass mode, optimizing G.T ratio of BWG antenna 196—299
BWG antenna performance in bypass mode, X- and Ka-band test packages 190—191
BWG antenna, phase 1 measured results 190—204
BWG antennas 3
BWG systems, noise temperature in 35—40
Bypass beam waveguide, removal of 204—210
Canberra, Australia, DSN in 1
Cassegrain concept 71—72
Cassegrain geometry, factors influencing 72—73
Cassegrain telescope 1
Cassegrain-type feed system, DSCCs and 1
Cassini radio science Ka-band ground system 239—248
Cassini radio science Ka-band ground system, beam-aberration correction 246 248
Cassini radio science Ka-band ground system, measured performance after installation of Ka-band 244—245
Cassini radio science Ka-band ground system, monopulse pointing system 243—244
Cassini radio science Ka-band ground system, optics design 240—242
Deep Space Station 11: Pioneer 71—77
Deep Space Station 11: Pioneer, 26-meter Cassegrain system 74—77
Deep Space Station 11: Pioneer, Cassegrain concept 71—72
Deep Space Station 11: Pioneer, factors influencing Cassegrain geometry 72 73
Deep space station 12: Echo 79—87
Deep space station 12: Echo, 26-meter S-/X-band conversion project 82—86
Deep space station 12: Echo, Goldstone-Apple Valley Radio Telescope project 86 87
Deep space station 12: Echo, S-band Cassegrain monopulse feed horn 81—82
Deep Space Station 13: Venus 89—95
Deep Space Station 13: Venus, dual-mode conical feed horn 93
Deep Space Station 13: Venus, gain calibration 93—95
Deep Space Station 14: Mars 97—150
Deep Space Station 14: Mars, antenna structure 98—101
Deep Space Station 14: Mars, distortion compensation 140—149
Deep Space Station 14: Mars, future interests and challenges 150
Deep Space Station 14: Mars, L-band 120—125
Deep Space Station 14: Mars, reflex-dichroic feed system 114—120
Deep Space Station 14: Mars, S-band (1966) 101—102
Deep Space Station 14: Mars, tricone multiple Cassegrain feed system 106—113
Deep Space Station 14: Mars, upgrade from 64 to 70 meters 125—139
Deep Space Station 14: Mars, X-band, performance at 103—106
Deep Space Station 15: Uranus 157—164
Deep Space Station 15: Uranus, common-aperture feed 158—159
Deep Space Station 15: Uranus, computed versus measured performance 163—164
| Deep Space Station 15: Uranus, dual-reflector shaping 159—162
Deep Space Station 27 276—280
Deep-space communications complexes (DSCCs) 1
Designing reflector antennas, analysis techniques for 6—40
Dichroic analysis 29—32
Dichroic design, low-cost 32
DSS-11, 26-meter Cassegrain system 74 77
DSS-24, efficiency measurements 230—234
DSS-24, initial testing of 227—239
DSS-24, microwave holography measurements 229—230
DSS-24, noise-temperature results 235—236
DSS-24, the shroud 236—239
Dual-mode conical feed horn, Venus antenna and 93
Dual-reflector shaping 20—23
Dual-reflector shaping, offset-shaped reflector antennas 23
Dual-reflector shaping, theoretical solution for symmetric case 20—23
Dual-vane polarizers 273—275
Echo antenna 2
Efficiency measurements, aperture gain and 51—53
Fced-hom analysis 14—18
Focal-plane matching, BWG design and 58
Frequency bands allocated to DSN 6
Gain calibration, Venus antenna and 93—95
Gaussian beam design 59 60
Gaussian-beam algorithm 24- 27
Gaussian-beam analysis 6
GAVRT see Goldstone — Apple Valley Radio Telescope program
Geometric optics (GO) 6
Goldstone — Apple Valley Radio Telescope program 86—87
Goldstone, California, DSN in 1
Heinrich Hertz 6
High-efficiency (HEF) antenna 2
High-power design, BWG systems and 61—62
Highpass BWG design 56—58
Illumination function, reflector antennas, design principles for 5
Interplanetary network 290—291
Ka-band upgrades receive-only system 248—252
Ka-band upgrades receive-only system, BWG geometry 249
Ka-band upgrades receive-only system, demonstration at DSS-26 249—252
Ka-band upgrades receive-only system, X-/X-/Ka-Band feed 248—249
Low-cost dichroic design 32
Madrid, Spain, DSN in 1
Mars Aerostationary Relay Satellite (MARSat) 290
Mars Global Surveyor 290
Mars Odyssey (2001) 290
Measurement techniques 40—55
Measurement techniques, aperture gain and efficiency measurements 51—53
Measurement techniques, microwave holography 45—50
Measurement techniques, noise-temperature measurements 53—55
Measurement techniques, theodolite measurements 40—45
Microwave holography 45—50
Multifrequency operations 210—218
Multifrequency operations, S-band design 213—218
Multifrequency operations, X-/Ka band system 210—213
Next-generation deep space network 283—292
Next-generation deep space network, study to replace 70-meter antennas 284—289
Next-generation deep space network, towards the interplanetary network 290 292
Noise temperature in BWG systems 35—40
Noise-temperature measurements 53—55
Offset-shaped reflector antennas 23
Parabolic dish antennas, evolution of 1—3
Physical optics (PO) 6 7—8
Pioneer Deep Space Station 2
Quasioptical techniques 23—28
Quasioptical techniques, example 27—28
Quasioptical techniques, Gaussian beam algorithm 24—27
Quasioptical techniques, PO technique 24
Quasioptical techniques, ray analysis algorithm 27
R&D antenna 3
Radiation-pattern analysis 7—14
Radiation-pattern analysis, application to dual-reflector antennas 10—11
Radiation-pattern analysis, mathematical details 8 10
Radiation-pattern analysis, numerical example of 13—14
Radiation-pattern analysis, useful coordinate transformations 11—13
Ray analysis algorithm 27
Ray tracing 6
Reeeive-system design 268—272
Reflector antennas, analysis techniques for designing 6—40
Reflector antennas, antenna noise-temperatiure determination 33—40
Reflector antennas, dichroic analysis 29—32
Reflector antennas, dual-reflector shaping 20—23
Reflector antennas, feed-horn analysis 14—18
Reflector antennas, quasioptical techniques 23—28
Reflector antennas, radiation-pattern analysis 7—14
Reflector antennas, spherical-wave analysis 18—20
Removal of bypass beam waveguide 204—210
S-band Cassegrain monopulse feed horn 81—82
Signal processing center (CPS) 1
Signal-to-noise ratio (SNR) 3
Sphcrieal-wave analysis 18—20
Technology drivers 3—6
Technology drivers, allocated frequency bands 6
Theodolite measurements 40—45
Total system-noise temperature 4
Transmit feed horn, design of 262—267
U.S.National Aeronautics and Space Administration (NASA) Deep Space Network (DSN) 1
Uplink arraying 275—276
Venus site, as DSN R&D station 2
Voyager spacecraft, encounter at Neptune 2
|
|
|
Ðåêëàìà |
|
|
|