Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Vanmarcke Erik — Random Fields : Analysis and Synthesis
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Random Fields : Analysis and Synthesis
Àâòîð: Vanmarcke Erik
Àííîòàöèÿ: Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included.
After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields.
After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /Âåðîÿòíîñòü /Ñòîõàñòè÷åñêèå ïðîöåññû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1983
Êîëè÷åñòâî ñòðàíèö: 393
Äîáàâëåíà â êàòàëîã: 15.06.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Isotropic behavior of the variance function 243
Isotropic bounds on spectral bandwidth measures 13 145—147 155
Isotropic condition of moments of correlation function 242 287—288
Isotropic condition on 3-D spectral density function 105
Isotropic corner frequencies 274 299
Isotropic correlation measures 242—243 287 289
Isotropic correlation structure 81 242 287
Isotropic envelope statistics 155
Isotropic joint spectral moments 143 146—147
Isotropic lower bound on correlation function 81
Isotropic moving averages 126—127
Isotropic multidimensional spectra 103—105
Isotropic random fields 11 31 242
Isotropic two-dimensional spectra 98—99 ]04 122 243 244
Isserlis, L. 51
Jenkins, G.M. 7 341
Joint event 25
Joint spectral moments, definition and notation 11 96 141—145
Joint spectral moments, interpretation in partial derivatives 13 148—149
Joint spectral moments, second-order relation to quadrant symmetry 149 256—257 310 312—313
Kafritsas, J.C. 198
Kalman, R. 6
Khinchine, A.I. 5 see
Kolmogorov, A.N. 6 7 56 72
Krige, D.G. 6 57
Kriging 57
Lag vector, notation 79
Langevin equation see "Brownian motion"
Laplace operator 122—123
Lattice process, definition of 21
Lattice process, purely random 62—66
Lattice process, second-order input-output relations 109—110
Laws of disorder 17 218—219 262—264 321—322
Leadbetter, M.R. 12 151
Lee, Y.W. 7
Level crossings see "Threshold crossings"
Level curves and surfaces 165 170
Level-crossing statistics if mean by local averages 213—217 258—261 313—315
Level-crossing statistics, mean size of excursion regions 165—169 260—261 313—315
Level-crossing statistics, square derivative exists 155—163 166
Lindenberg, K. 73
Linear estimation see "Optimal linear estimation"
linear oscillator 124—125
Linear oscillator, spectral parameters of response to white noise 179—180
Linear systems, response analysis 105—110 217—219 262—264 321—322
Lm, Y.K. 7 82 183
Local averages of integrals, multidimensional 285—286
Local averages of integrals, one-dimensional 185—190
Local averages of integrals, scale of fluctuation and correlation measures 218 263 320
Local averages of integrals, two-dimensional 235 253—255
Local averages of integrals, variance for homogeneous-random fields 115—119
Local maxima of Gaussian processes 156—157
Local maxima, mean frequency or above high levels 157—159 215 262 315—316
Local maxima, tendency to cluster 161—163
Localized linear transformations of a random field 253—255
Lognormal probability distribution 53
Longuet-Higgins, M.C. 140 157
Low-pass white noise see "White noise"
Lower bounds see "Bounds"
Lumley, J.L. 7 84 195
Lyon, R.H. 161
Macroscale 3 9 225—226
Mandelbrot, B.B. 7 225
Marginal see "Bivariate" "Conditional"
Mark, W.D. 183
Markov chains 70—71
Markov correlation structure 120—124 186 193—194
Markov models 178—179 274—275 383—385
Markov processes 69—73
Markov property 69—70 121
Markov, frequency-dependent correlation measures 274—275 303—305
Markov, historical review 3—4
Markov, memory length 178
Markov, nonexistence of mean square derivative 175 214
Markov, spectral parameters 178—179
Markov, threshold-crossing process, one-dimensional 164 see
Marshal, T.A. 183
Matern, B. 81
Matheron, G. 6 57
Maximum values of independent random variables 35—36
Maximum values, probability distribution for local averages 15 215—216 317—319
Maximum values, probability distribution if mean square derivative exists 163—165 172—174
Mean excursion length for local averages 216—217 259—260
Mean excursion length if mean square derivative exists 159—161 166—170 see
Mean of a random variable, definition 37
Mean of frequency 140
Mean recurrence region 314—318
Mean square derivatives 15 111 156
Mean square derivatives of composite models 224
Mean square derivatives of local averages 208—212 257—259 309—312 312—313
Mean square derivatives, existence 113—114 175 192 208—209 213—214
Mean square derivatives, sensitivity to details of correlation structure 113 175 213
Mean square derivatives, use in parameter estimation 328
Mean square differentiability conditions 113—114 175 208—209
Mean square error in optimal linear estimation 57—59 see
Mean square of frequency 139—140 147 see
Mean square of random variable, definition 37
Mean threshold-crossing rates if mean square derivative exists 155—163
Mean threshold-crossing rates of linear averages 215 230—360
Mean threshold-crossing rates, use in parameter estimation 328
Measurement errors 18 225 330—331 349 351 353
Measurement in linear estimation 58 61
Measurement of random fields 2 350 353 361
Measurement, limited resolution 2 9 213 219 225 330—331
Median, definition of 38
Mejia, J.M. 82
Memory length of Markovian models 178
Meteorology, applications in 1 82 353
Microscale 2 9 13—14 113 213 225 354
Middleton, D. 7
Mitsuyasu, H. 83
Moan, T. 7
Moments of correlation function 12 188 192 205—206 238 241—242 287
Moments of random variable 37 44
Moments of spectral density function 11 139—147 175—180 256 see
Monin, A.S. 7 145
Monochromatic wave 135
Monte Carlo simulation 36 349
Moving average, correlation models 119 125—128
Moving average, nonexistence of mean square derivative 175
Moving average, random processes 185 235 285
Moving average, scale of fluctuation and correlation measures 218 263 320
Multicomponent modeling 18 183 221—224 265 296 330—331 349
Narrow-band processes 157 206—208 224
Nearest neighbor in Poisson process 75 76
Negative binomial distribution 67
Nichols, R. 141
Nonhomogeneous random fields 182—183
Normal distribution 47 see
Nosko, V.P. 170 316
Ocean engineering 83 136
Ocean engineering, local maxima above heights 157
On-off process 90—92
One-sided spectral density function 86 133 see
Optimal linear estimation 6 56—61 349—351 351—353
Ornstein, L.S. 4 72 73
Page, C.H. 183
Parameter estimation for composite processes 330—331
Parameter estimation from digitized records 335—336 345—347
Parameter estimation in Bayasian framework 327 346
Parameter estimation in frequency domain 339—347
Parameter estimation, based on correlation function 331—336
Parameter estimation, based on variance function 336—339
Parameter estimation, simple procedures 327—330
Parseval's theorem 343
Partial derivatives and spectral moments 148—149
Partial derivatives of envelope statistics 12 153—155
Partial derivatives of local average field 309—312
Partial derivatives, statistics 110—113
Parzen, E. 4 70 77 331 339
Peak factor 163
Perrin, J. 69
Petocz, P. 183
Physics, applications in 1 4 5 6 23 68—69 72—73 359—360 see
Piersol, A.G. 7
Point process see "Impulse or point process"
Poisson process 4 15 47 73—77
Poisson process, linear transformation 221
Poisson process, local maxima above high levels 163 166 170 174 358 see
Poisson process, scale of fluctuation 221 232—233
Poisson process, spectral representation 91—92
Poisson variance in elementary probability 27—52 see
Poisson variance in linear estimation 57—69 349—351
Positive definite, covariance function 41
Positive definite, covariance matrix 40
Positive definite, ellipsoidal correlation function, matrix 82
Power law approximation to the variance function 205—206 265—266
Prediction 18 349—351 361 see
Priestley, M.B. 183
Prior probability 27 52 see
Probabilistic independence see "Independence"
Probability density function, notation 28
Probability mass function, notation 28 29 30
Pugachev, V.S. 56 118
Purely random fields 62—65 127
Purely random fields, spectral representation 90—91
Quadrant symmetry 11 80 81—82
Quadrant symmetry, input-output in frequency domain 108
Quadrant symmetry, joint spectral moment of second order 149 256—257 310 312—313
Quadrant symmetry, multidimensional homogeneous field 101—102
Quadrant symmetry, space-time correlation structure 133—134 266
Quadrant symmetry, two-dimensional homogeneous field 94—99
Quadrature spectrum 133
Qualified R-crossings 162 317
R-crossings 161—162 see "Envelope"
Radial correlation function 81 103 242 274 287 299
Radial spectral density function 98 104 244
Radial spectrum 98 104 122 243
Rain-on-the-roof process 65 69
Random impulse process see "Impulse process"
Random measurement errors see "Measurement errors"
Random media, nature of uncertainty 2 219 285 347 360—362
Random partition of space, definition 21 219
Random series, definition 21
Random series, local integration 118—119
Random series, purely random 62—63
Random series, scale of fluctuation 230—231
Random series, spectral representation 90—91
Random series, sums or averages 65—66 229
Random vibration 7 18 183 343—344 348
Random walk, historical review 3
Random walk, historical review, analysis 71—73 see "Brownian
Ratoosh, P. 24
Rayleigh distribution 54
Rayleigh distribution, envelope 156—157 160 162 215
Regenerative property of variance functions 219—220 322 333
Regions of excursion, statistics 165—170 313—315 see
Regions of excursion, summary 16
Reliability function 163—165 172—174
Reliability function for local averages 215—216 262 317—319
Rice, S.O. 4 6 150 155 157
Richards, P.G. 6
Richterdyn, N. 7
Rodriguez-Iturbe, I. 7
Root mean square (r.m.s.) 37
Root mean square (r.m.s.), spectral equivalent 139
Safe region see "Reliability function"
Sample space 25
Sample Spectra as random processes 18 341—345
Sample statistics, correlation or covariance function 332—336
Sample statistics, invariant uncertainty density 332 340
Sample statistics, scale of fluctuation 332—335 336—340 346
Sample statistics, spectral 18 339—340
Sample statistics, variance 332 336 343—344
Sample statistics, variance function 336—339
Sampling intervals, relationship to scale of fluctuation 18—19 330 336 345—346 351—355 361
Savage, L.J. 27
Scale of fluctuation for wide-band random processes, sufficient descriptor of 224 349 355
Scale of fluctuation in Brownian motion 339
Scale of fluctuation of composite models 224—225 323
Scale of fluctuation of fractional noise 225
Scale of fluctuation of linear transformations see also "Invariant"
Scale of fluctuation of local average processes 219 320
Scale of fluctuation of random series 230—231
Scale of fluctuation of sample spectra 341
Scale of fluctuation, conditional 16 247—250 291—295
Scale of fluctuation, direction-dependent 239—240 288 289—294 294—295
Scale of fluctuation, ergodicity 346
Scale of fluctuation, existence conditions 192 240 287
Scale of fluctuation, frequency-dependent 17 267—275 294 300 304 305
Scale of fluctuation, one-dimensional 14 185 187—190 220—221 233 236
Scale of fluctuation, piecewise linear approximation 248 293—294
Scale of fluctuation, relationship to optimal sampling intervals 18 330 351—353
Scale of fluctuation, statistical estimation 327—347 327 346
Scale of fluctuation, zero-scale narrow-band process 206—208
Scale of measurement 1—3 9 24 63
Scale of measurement, relationship to fractional noise 7 225
Schwartz's inequality, spectral moments of 140
Schweppe, F.C. 5
Self-similar in patterns of random variation 7 see
Separable random field, correlation structure 16 82 97 241—242 245 290
Separable random field, frequency-dependent correlation measures 274 300
Seshadri, V. 73
Sherman, C. 136
Shmazuka, M. 7 136
Shot noise 4 see
Simple events 26
Simulation 36 349
Sinusoid with random phase angle, spectral parameters of 176—177
Slutzky, E. 7
Smith, F. 206
Smoluchovski, M. 4 72
Space-time process, correlation structure 128—137 266—267 267—275
Space-time process, effect of spatial averaging on frequency content 275—282
Space-time process, frequency-dependent spatial scale of fluctuation 267—275
Space-time process, nature of the uncertainty 2 10
Space-time process, summary of results 16 18
Spectral bandwidth measures 12 139—140 145—147
Spectral bandwidth measures of local averages 212—213 217 314
Spectral bandwidth measures, bounds 12
Spectral bandwidth measures, examples 175—182
Spectral bandwidth measures, existence 174—175 213—214
Spectral bandwidth measures, relationship to excursion statistics 152—155 156—158 161 261
Spectral density function of composite models 222—223 225 323
Spectral density function of fractional noise 225
Spectral density function of random impulse process 91—92
Spectral density function of random series 90—91
Spectral density function under local averaging, limiting form 321
Spectral density function, behavior near zero frequency 191—193 238—239 242 287—288 352
Spectral density function, common models 174—182 193—194
Spectral density function, constraints on isotropic models 105 242 288
Spectral density function, derivative evaluated at zero 192 240 287
Spectral density function, effect of spatial averaging in space-time process 278—282 300—303
Spectral density function, estimation procedures 327 339—347
Spectral density function, historical review 5—7 10
Spectral density function, input-output for linear systems 102 110
Spectral density function, moments see "Spectral moments"
Spectral density function, one-dimensional 84—92
Spectral density function, one-sided versus two-sided 85 86 133
Spectral density function, radial 98 104 243
Spectral density function, relationship to variance function 191 236—239 251 287
Spectral density function, sample spectra as random functions of frequency 18 341—345 347
Spectral density function, sensitivity to microscale variations 13—14 175 213
Spectral density function, two-dimensional 92—99 128—137 244 267
Spectral density function, unit-area, analogy with probability density function 139—140
Spectral distribution function 87 96—97 103
Spectral distribution function, one-dimensional bounds 140—141
Spectral moments of local averages 210—213 256
Spectral moments, definition 139—147
Spectral moments, examples 175—182
Ðåêëàìà