Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Vanmarcke Erik — Random Fields : Analysis and Synthesis
Vanmarcke Erik — Random Fields : Analysis and Synthesis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Random Fields : Analysis and Synthesis

Àâòîð: Vanmarcke Erik

Àííîòàöèÿ:

Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included.

After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields.

After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/Âåðîÿòíîñòü/Ñòîõàñòè÷åñêèå ïðîöåññû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1983

Êîëè÷åñòâî ñòðàíèö: 393

Äîáàâëåíà â êàòàëîã: 15.06.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Isotropic behavior of the variance function      243
Isotropic bounds on spectral bandwidth measures      13 145—147 155
Isotropic condition of moments of correlation function      242 287—288
Isotropic condition on 3-D spectral density function      105
Isotropic corner frequencies      274 299
Isotropic correlation measures      242—243 287 289
Isotropic correlation structure      81 242 287
Isotropic envelope statistics      155
Isotropic joint spectral moments      143 146—147
Isotropic lower bound on correlation function      81
Isotropic moving averages      126—127
Isotropic multidimensional spectra      103—105
Isotropic random fields      11 31 242
Isotropic two-dimensional spectra      98—99 ]04 122 243 244
Isserlis, L.      51
Jenkins, G.M.      7 341
Joint event      25
Joint spectral moments, definition and notation      11 96 141—145
Joint spectral moments, interpretation in partial derivatives      13 148—149
Joint spectral moments, second-order relation to quadrant symmetry      149 256—257 310 312—313
Kafritsas, J.C.      198
Kalman, R.      6
Khinchine, A.I.      5 see
Kolmogorov, A.N.      6 7 56 72
Krige, D.G.      6 57
Kriging      57
Lag vector, notation      79
Langevin equation      see "Brownian motion"
Laplace operator      122—123
Lattice process, definition of      21
Lattice process, purely random      62—66
Lattice process, second-order input-output relations      109—110
Laws of disorder      17 218—219 262—264 321—322
Leadbetter, M.R.      12 151
Lee, Y.W.      7
Level crossings      see "Threshold crossings"
Level curves and surfaces      165 170
Level-crossing statistics if mean by local averages      213—217 258—261 313—315
Level-crossing statistics, mean size of excursion regions      165—169 260—261 313—315
Level-crossing statistics, square derivative exists      155—163 166
Lindenberg, K.      73
Linear estimation      see "Optimal linear estimation"
linear oscillator      124—125
Linear oscillator, spectral parameters of response to white noise      179—180
Linear systems, response analysis      105—110 217—219 262—264 321—322
Lm, Y.K.      7 82 183
Local averages of integrals, multidimensional      285—286
Local averages of integrals, one-dimensional      185—190
Local averages of integrals, scale of fluctuation and correlation measures      218 263 320
Local averages of integrals, two-dimensional      235 253—255
Local averages of integrals, variance for homogeneous-random fields      115—119
Local maxima of Gaussian processes      156—157
Local maxima, mean frequency or above high levels      157—159 215 262 315—316
Local maxima, tendency to cluster      161—163
Localized linear transformations of a random field      253—255
Lognormal probability distribution      53
Longuet-Higgins, M.C.      140 157
Low-pass white noise      see "White noise"
Lower bounds      see "Bounds"
Lumley, J.L.      7 84 195
Lyon, R.H.      161
Macroscale      3 9 225—226
Mandelbrot, B.B.      7 225
Marginal      see "Bivariate" "Conditional"
Mark, W.D.      183
Markov chains      70—71
Markov correlation structure      120—124 186 193—194
Markov models      178—179 274—275 383—385
Markov processes      69—73
Markov property      69—70 121
Markov, frequency-dependent correlation measures      274—275 303—305
Markov, historical review      3—4
Markov, memory length      178
Markov, nonexistence of mean square derivative      175 214
Markov, spectral parameters      178—179
Markov, threshold-crossing process, one-dimensional      164 see
Marshal, T.A.      183
Matern, B.      81
Matheron, G.      6 57
Maximum values of independent random variables      35—36
Maximum values, probability distribution for local averages      15 215—216 317—319
Maximum values, probability distribution if mean square derivative exists      163—165 172—174
Mean excursion length for local averages      216—217 259—260
Mean excursion length if mean square derivative exists      159—161 166—170 see
Mean of a random variable, definition      37
Mean of frequency      140
Mean recurrence region      314—318
Mean square derivatives      15 111 156
Mean square derivatives of composite models      224
Mean square derivatives of local averages      208—212 257—259 309—312 312—313
Mean square derivatives, existence      113—114 175 192 208—209 213—214
Mean square derivatives, sensitivity to details of correlation structure      113 175 213
Mean square derivatives, use in parameter estimation      328
Mean square differentiability conditions      113—114 175 208—209
Mean square error in optimal linear estimation      57—59 see
Mean square of frequency      139—140 147 see
Mean square of random variable, definition      37
Mean threshold-crossing rates if mean square derivative exists      155—163
Mean threshold-crossing rates of linear averages      215 230—360
Mean threshold-crossing rates, use in parameter estimation      328
Measurement errors      18 225 330—331 349 351 353
Measurement in linear estimation      58 61
Measurement of random fields      2 350 353 361
Measurement, limited resolution      2 9 213 219 225 330—331
Median, definition of      38
Mejia, J.M.      82
Memory length of Markovian models      178
Meteorology, applications in      1 82 353
Microscale      2 9 13—14 113 213 225 354
Middleton, D.      7
Mitsuyasu, H.      83
Moan, T.      7
Moments of correlation function      12 188 192 205—206 238 241—242 287
Moments of random variable      37 44
Moments of spectral density function      11 139—147 175—180 256 see
Monin, A.S.      7 145
Monochromatic wave      135
Monte Carlo simulation      36 349
Moving average, correlation models      119 125—128
Moving average, nonexistence of mean square derivative      175
Moving average, random processes      185 235 285
Moving average, scale of fluctuation and correlation measures      218 263 320
Multicomponent modeling      18 183 221—224 265 296 330—331 349
Narrow-band processes      157 206—208 224
Nearest neighbor in Poisson process      75 76
Negative binomial distribution      67
Nichols, R.      141
Nonhomogeneous random fields      182—183
Normal distribution      47 see
Nosko, V.P.      170 316
Ocean engineering      83 136
Ocean engineering, local maxima above heights      157
On-off process      90—92
One-sided spectral density function      86 133 see
Optimal linear estimation      6 56—61 349—351 351—353
Ornstein, L.S.      4 72 73
Page, C.H.      183
Parameter estimation for composite processes      330—331
Parameter estimation from digitized records      335—336 345—347
Parameter estimation in Bayasian framework      327 346
Parameter estimation in frequency domain      339—347
Parameter estimation, based on correlation function      331—336
Parameter estimation, based on variance function      336—339
Parameter estimation, simple procedures      327—330
Parseval's theorem      343
Partial derivatives and spectral moments      148—149
Partial derivatives of envelope statistics      12 153—155
Partial derivatives of local average field      309—312
Partial derivatives, statistics      110—113
Parzen, E.      4 70 77 331 339
Peak factor      163
Perrin, J.      69
Petocz, P.      183
Physics, applications in      1 4 5 6 23 68—69 72—73 359—360 see
Piersol, A.G.      7
Point process      see "Impulse or point process"
Poisson process      4 15 47 73—77
Poisson process, linear transformation      221
Poisson process, local maxima above high levels      163 166 170 174 358 see
Poisson process, scale of fluctuation      221 232—233
Poisson process, spectral representation      91—92
Poisson variance in elementary probability      27—52 see
Poisson variance in linear estimation      57—69 349—351
Positive definite, covariance function      41
Positive definite, covariance matrix      40
Positive definite, ellipsoidal correlation function, matrix      82
Power law approximation to the variance function      205—206 265—266
Prediction      18 349—351 361 see
Priestley, M.B.      183
Prior probability      27 52 see
Probabilistic independence      see "Independence"
Probability density function, notation      28
Probability mass function, notation      28 29 30
Pugachev, V.S.      56 118
Purely random fields      62—65 127
Purely random fields, spectral representation      90—91
Quadrant symmetry      11 80 81—82
Quadrant symmetry, input-output in frequency domain      108
Quadrant symmetry, joint spectral moment of second order      149 256—257 310 312—313
Quadrant symmetry, multidimensional homogeneous field      101—102
Quadrant symmetry, space-time correlation structure      133—134 266
Quadrant symmetry, two-dimensional homogeneous field      94—99
Quadrature spectrum      133
Qualified R-crossings      162 317
R-crossings      161—162 see "Envelope"
Radial correlation function      81 103 242 274 287 299
Radial spectral density function      98 104 244
Radial spectrum      98 104 122 243
Rain-on-the-roof process      65 69
Random impulse process      see "Impulse process"
Random measurement errors      see "Measurement errors"
Random media, nature of uncertainty      2 219 285 347 360—362
Random partition of space, definition      21 219
Random series, definition      21
Random series, local integration      118—119
Random series, purely random      62—63
Random series, scale of fluctuation      230—231
Random series, spectral representation      90—91
Random series, sums or averages      65—66 229
Random vibration      7 18 183 343—344 348
Random walk, historical review      3
Random walk, historical review, analysis      71—73 see "Brownian
Ratoosh, P.      24
Rayleigh distribution      54
Rayleigh distribution, envelope      156—157 160 162 215
Regenerative property of variance functions      219—220 322 333
Regions of excursion, statistics      165—170 313—315 see
Regions of excursion, summary      16
Reliability function      163—165 172—174
Reliability function for local averages      215—216 262 317—319
Rice, S.O.      4 6 150 155 157
Richards, P.G.      6
Richterdyn, N.      7
Rodriguez-Iturbe, I.      7
Root mean square (r.m.s.)      37
Root mean square (r.m.s.), spectral equivalent      139
Safe region      see "Reliability function"
Sample space      25
Sample Spectra as random processes      18 341—345
Sample statistics, correlation or covariance function      332—336
Sample statistics, invariant uncertainty density      332 340
Sample statistics, scale of fluctuation      332—335 336—340 346
Sample statistics, spectral      18 339—340
Sample statistics, variance      332 336 343—344
Sample statistics, variance function      336—339
Sampling intervals, relationship to scale of fluctuation      18—19 330 336 345—346 351—355 361
Savage, L.J.      27
Scale of fluctuation for wide-band random processes, sufficient descriptor of      224 349 355
Scale of fluctuation in Brownian motion      339
Scale of fluctuation of composite models      224—225 323
Scale of fluctuation of fractional noise      225
Scale of fluctuation of linear transformations      see also "Invariant"
Scale of fluctuation of local average processes      219 320
Scale of fluctuation of random series      230—231
Scale of fluctuation of sample spectra      341
Scale of fluctuation, conditional      16 247—250 291—295
Scale of fluctuation, direction-dependent      239—240 288 289—294 294—295
Scale of fluctuation, ergodicity      346
Scale of fluctuation, existence conditions      192 240 287
Scale of fluctuation, frequency-dependent      17 267—275 294 300 304 305
Scale of fluctuation, one-dimensional      14 185 187—190 220—221 233 236
Scale of fluctuation, piecewise linear approximation      248 293—294
Scale of fluctuation, relationship to optimal sampling intervals      18 330 351—353
Scale of fluctuation, statistical estimation      327—347 327 346
Scale of fluctuation, zero-scale narrow-band process      206—208
Scale of measurement      1—3 9 24 63
Scale of measurement, relationship to fractional noise      7 225
Schwartz's inequality, spectral moments of      140
Schweppe, F.C.      5
Self-similar in patterns of random variation      7 see
Separable random field, correlation structure      16 82 97 241—242 245 290
Separable random field, frequency-dependent correlation measures      274 300
Seshadri, V.      73
Sherman, C.      136
Shmazuka, M.      7 136
Shot noise      4 see
Simple events      26
Simulation      36 349
Sinusoid with random phase angle, spectral parameters of      176—177
Slutzky, E.      7
Smith, F.      206
Smoluchovski, M.      4 72
Space-time process, correlation structure      128—137 266—267 267—275
Space-time process, effect of spatial averaging on frequency content      275—282
Space-time process, frequency-dependent spatial scale of fluctuation      267—275
Space-time process, nature of the uncertainty      2 10
Space-time process, summary of results      16 18
Spectral bandwidth measures      12 139—140 145—147
Spectral bandwidth measures of local averages      212—213 217 314
Spectral bandwidth measures, bounds      12
Spectral bandwidth measures, examples      175—182
Spectral bandwidth measures, existence      174—175 213—214
Spectral bandwidth measures, relationship to excursion statistics      152—155 156—158 161 261
Spectral density function of composite models      222—223 225 323
Spectral density function of fractional noise      225
Spectral density function of random impulse process      91—92
Spectral density function of random series      90—91
Spectral density function under local averaging, limiting form      321
Spectral density function, behavior near zero frequency      191—193 238—239 242 287—288 352
Spectral density function, common models      174—182 193—194
Spectral density function, constraints on isotropic models      105 242 288
Spectral density function, derivative evaluated at zero      192 240 287
Spectral density function, effect of spatial averaging in space-time process      278—282 300—303
Spectral density function, estimation procedures      327 339—347
Spectral density function, historical review      5—7 10
Spectral density function, input-output for linear systems      102 110
Spectral density function, moments      see "Spectral moments"
Spectral density function, one-dimensional      84—92
Spectral density function, one-sided versus two-sided      85 86 133
Spectral density function, radial      98 104 243
Spectral density function, relationship to variance function      191 236—239 251 287
Spectral density function, sample spectra as random functions of frequency      18 341—345 347
Spectral density function, sensitivity to microscale variations      13—14 175 213
Spectral density function, two-dimensional      92—99 128—137 244 267
Spectral density function, unit-area, analogy with probability density function      139—140
Spectral distribution function      87 96—97 103
Spectral distribution function, one-dimensional bounds      140—141
Spectral moments of local averages      210—213 256
Spectral moments, definition      139—147
Spectral moments, examples      175—182
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå