We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
) in living cells. Modeling
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
release as a threshold process allows the explicit construction of traveling wave solutions to probe the dependence of
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
wave speed on physiologically important parameters such as the threshold for
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
release from the endoplasmic reticulum (ER) to the cytosol, the rate of
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
resequestration from the cytosol to the ER, and the total [
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called ‘tango waves’ and the dependence of
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
wave speed on the total [
![$Ca^{2+}$](/math_tex/7259c00050b6692773ced1de20fcd07982.gif)
].