Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Hughes B.D. — Random Walks and Random Environments: Random Environments (том 2)
Hughes B.D. — Random Walks and Random Environments: Random Environments (том 2)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Random Walks and Random Environments: Random Environments (том 2)

Автор: Hughes B.D.

Аннотация:

This is the second volume of a two-volume work devoted to probability theory in physical chemistry, and engineering. Rather than dealing explicitly with the idea of an ongoing random walk, with each chaotic step taking place at fixed time intervals, this volume addresses models in which the disorder is frozen in space-random environments. It begins with an introduction to the geometry of random environments, emphasizing Bernoulli percolation models. The scope of the investigation then widens as we ask how structural disorder affects the transport process. The final chapters confront the interplay of two different forms of randomness; spatial randomness frozen into the environment and temporal randomness associated with the choices for next steps made by a random walker. The book ends with a discussion of "the ant in the labyrinth" problems and an extensive bibliography that, along with the rest of the material, will be of value to researchers in physics, mathematics, and chemical engineering.


Язык: en

Рубрика: Математика/Вероятность/Стохастические процессы/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 274

Добавлена в каталог: 04.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Harris' theorem, generalized by Fisher      153
Harris' theorem, proof of imitated      155 160 162 163
Harris' theorem, stated and proved      149
High-density phase, connectivity function      242
High-density phase, correlation length, defined      243
High-density phase, correlation length, exponent $\nu'$      243
High-density phase, critical probability ph defined      15
High-density phase, decay of cluster-size distribution      45
High-density phase, defined      15
High-density phase, pair connectedness      242
Hoelder's inequality      219
Honeycomb lattice, dual (triangular lattice) admits Seymour — Welsh theorem      153
Honeycomb lattice, exact bond threshold      142
Honeycomb lattice, exponents same as for triangular      200
Hull, Monte Carlo algorithm for      178
Hull, only part of cluster boundary      300
Hull, used in bounding $P_n(p)$ in high-density phase      45
Hyperscaling relations for percolation      207 273
Increasing events, defined      89
Increasing events, Harris — FKG inequality      90
Increasing events, problems with for $p>p_c$      242
Increasing events, Russo's Formula      99
Increasing events, van den Berg — Kesten inequality      93
Infimum      15
Infinite cluster, backbone of      See Backbone
Infinite cluster, uniqueness of      See Uniqueness of infinite cluster
Infinite clusters, mean number is $\infty$ for Bethe lattice above $p_c$      133
Infinite clusters, number of is 0, 1 or $\infty$      133
Infinite clusters, number of is well defined      130
Integer part, defined      xxiv
Integer part, used      40 96 98 115 237 268 483 487
Integrated density of states      458
Interior boundary      89
Intermediate phase      47
Invariant measures      438
Invasion percolation      63
Jensen's inequality, used      320 328 390 406 412 478
Josephson inequalities      273
Kagome lattice, bounds on bond threshold      170 171
Kagome lattice, can be drawn as modified square lattice      178
Kagome lattice, covering lattice of honeycomb lattice      160
Kagome lattice, site threshold      160
Kelvin — Dirichlet — Wattage lemma      322
Kesten — Golosov theorem      409
Kesten's theorem for myopic ants at $p_c$, Bethe lattice      466
Kesten's theorem for myopic ants at $p_c$, square lattice      467
Kesten's theorem on scaling in two dimensions at the percolation threshold      249
Kesten's theorem on scaling in two dimensions, including approach to the threshold      251
Kesten, Harry      3
Kesten, Kozlov, and Spitzer, theorem of      404
Kinetic Ising model      70
Kirchhoff's law      472
Kirchhoff's law, stated      320
Kirchhoff's law, used      321—324 348 474 475
Landau symbols      xix
Laplace transform defined      345 386
Laplace transform defined, used      345—346 400—401 469
Lattice animal expansion, cf. perimeter polynomials      42
Lattice animal expansion, defined      216
Lattice animal expansion, justifying differentiation of series expansions      108 164
Lattice animal expansion, used      38 51 216—228
Lattice animals      216 246 362
Lattice animals, upper critical dimensionality is d=8      362
Lattice trees      246
Lattice, Bethe      245
Lattice, Bethe, backbone probability B(p)      26
Lattice, Bethe, cluster-size distribution $P_n(p)$      37
Lattice, Bethe, defined      22
Lattice, Bethe, Durrett — Nguyen inequality sharp for      216
Lattice, Bethe, exponents $\gamma$ and $\gamma'$ equal      202
Lattice, Bethe, exponents summarized      198
Lattice, Bethe, free energy      205
Lattice, Bethe, gelation model      14
Lattice, Bethe, mean cluster size $\chi(p)$      35
Lattice, Bethe, percolation probability $P_\infty(p)$      25
Lattice, Bethe, percolation threshold of      35
Lattice, Bethe, problems with concavity of F(p, h)      221
Lattice, Bethe, site-bond percolation on      54
Lattice, Bethe, susceptibility $\chi_f(p)$      37
Lattice, bipartite      56 175 464
Lattice, dense      478
Lattice, dual of      143
Lattice, homogeneous      86
Lattice, honeycomb, bond threshold      142 156
Lattice, honeycomb, dual of triangular      144
Lattice, kagome, bounds on bond threshold      170 171
Lattice, kagome, can be drawn as modified square lattice      178
Lattice, kagome, covering lattice of honeycomb lattice      160
Lattice, kagome, site threshold      160
Lattice, pentagon      170
Lattice, quasicrystalline      181 339
Lattice, smooth      479
Lattice, square, $\eta\delta_r=2$      239
Lattice, square, $\nu=\nu'$      243
Lattice, square, $\nu_k=\nu$      235
Lattice, square, bond threshold      142
Lattice, triangular      156
Lattice, triangular, bond threshold      142
Lattice, triangular, site threshold      160
Lattice, “bow-tie”      158 175 200
Lattice, “dice”      170
Law of large numbers, ergodic theory generalizes      127
Law of large numbers, strong form      319 332
Law of large numbers, weak form      319
Left excursion, defined      388
Left excursion, mean duration      397
Left recurrent, defined      388
Left recurrent, necessary and sufficient conditions      388
Lemma, Men'shikov's on coincidence of $p_L$ and $p_H$      112
Lemma, Nguyen's first      235
Lemma, Nguyen's second      236
Lemma, Nguyen's third      237
Lemma, of Chandra et al.      475
Lemma, of Doyle and Snell      473 479
Lemma, of Durrett and Nguyen on concavity of free energy      221
Lemma, of Grimmett, Kesten, and Zhang, proved      486—494
Lemma, of Grimmett, Kesten, and Zhang, stated      481
Lemma, of Men'shikov et al.      115
Lemma, of Nash — Williams      471
Lemma, of Newman on continuity of $P_\infty(p)$      227
Lemma, of Oxley and Welsh      20
Lemma, on absence of infinite cluster sites from large box      483
Lemma, on connections between specified sites of large boxes      483
Lemma, on lower bound for $\tau(s)$ for $p<p_c$      232
Lemma, on upper bound for $\tau(s)$ for $p<p_c$      230
Lemma, Tasaki's      268
Lemma, “mixing implies ergodic”      129
Long-range percolation      64
Loop currents      331
Low-density phase, bounds on the distribution of the wet set radius      95
Low-density phase, critical probability $p_L$ defined      33
Low-density phase, decay of pair connectedness      97
Low-density phase, decay of the cluster-size distribution      111
Low-density phase, defined      33
Low-density phase, lower bound for mean cluster size      102
Magnetization function, for long-range percolation      67
Magnetization function, for percolation      202
Magnetization function, relevance to ant in labyrinth      495
Mandelbrot, Benoit B.      3
Markov chain      438
Markov chain, formulation of ant in labyrinth      464
Markov chain, Markov process, reversible      443
Markov's inequality, stated and proved      212
Markov's inequality, used      214 413
Master equation, generalized      410
Master equation, with random transition rates      410
Matching lattices      165—168
Matching polynomial      167
Maximum principle, proof set as exercise      325
Maximum principle, used      349 474
Maxwell, James Clerk      318
Mean cluster size, $\chi(p)$ defined      33
Mean cluster size, alternative expression      33
Mean cluster size, bounded below      102
Mean cluster size, low-density series for      40
Mean number of clusters per lattice, site      163 439
Mean-field percolation exponents, etymology      199
Mean-field percolation exponents, expected for $d\ge6$      246
Mean-field percolation exponents, sufficient condition being $\gamma=1$      199
Mean-field percolation exponents, summarized      272
Mean-field percolation exponents, used in Flory-type argument      362
Mean-field percolation exponents, via Potts model      280—281
Measure-preserving transformation      128
Mellin transform      228 416 417
Men'shikov's coincidence lemma, stated and proved      112
Men'shikov's coincidence lemma, used      122
Men'shikov's theorem, proved      114—122
Men'shikov's theorem, stated      112
Men'shikov's theorem, used      152 160 162 218 226
Microscopic conductivity      348
Middle phase      47
Mixing property      129
Mobility      452
Monte Carlo simulation of cluster perimeters or hulls      178—180
Monte Carlo simulation of finite lattices      178
Monte Carlo simulation of single clusters      177—178
Montroll, Elliott W.      3
Mosaic, defined      144
Mosaic, used      153 154
Multifractals      317 360 430 446 505
Myopic ant      438
Neighbourhood of a site      89
Nested inside      472
Newman's lemma on continuity of the percolation probability      227
Nguyen's lemmas      235—237
Nguyen's theorem      234
Node and link model of backbone      358
Node-link-blob model of backbone      360
Non-linear conductance problems      324 332
O(), Landau symbol      xix
Ohm's law      472
Ohm's law, stated      320
Ohm's law, used      321 322 324 348 474 475
Onductance      319
Order parameter for long-range percolation      67
Order parameter for percolation      202
Ornstein — Zernike approximation      273 281
Outer boundary of a percolation cluster      300
p-occupied site      107 137
Pair connectedness, at percolation threshold      238—240
Pair connectedness, decay of in low-density phase      97
Pair connectedness, defined      88
Pair connectedness, for Bethe lattice      244
Pair connectedness, in high-density phase      242—244
Pair connectedness, moments of      233
Pair connectedness, scaling theory for      241
Partially oriented percolation      66
Pentagon lattice      170
Percolation      See also Percolation theory variations
Percolation conduction problem, defined (bond problem)      333
Percolation conduction problem, effective medium approximation      352—355
Percolation conduction problem, exponent bounds from finite-size scaling      341
Percolation conduction problem, exponent inequalities      335—338
Percolation conduction problem, finite-size scaling      340—342
Percolation conduction problem, likely behaviour      334
Percolation conduction problem, on Bethe lattice, ambiguities in exponent definitions      347—348
Percolation conduction problem, on Bethe lattice, effective medium approximation      347
Percolation conduction problem, on Bethe lattice, exact results      343—347
Percolation conduction problem, on Bethe lattice, potential correlations      348—349
Percolation conduction problem, position-space renormalization      350—352
Percolation conduction problem, renormalized effective medium approximation      356—357
Percolation conduction problem, Sierpinski lattice analogue      349
Percolation conduction problem, Straley's scaling theory      342—343
Percolation conduction problem, variations, continuum problem      339
Percolation conduction problem, variations, site problem      339
Percolation conduction problem, variations, superconductivity problem      338
Percolation of binary words      58
Percolation probability, bounded below      104—107
Percolation probability, continuity of, from left for $p>p_c$      137—138
Percolation probability, continuity of, from right      137
Percolation probability, continuity of, if $\gamma<2$      227—228
Percolation probability, defined      15
Percolation probability, for Bethe lattice      22—26
Percolation probability, high-density series      27—33
Percolation probability, self-avoiding walk bounds      17—19
Percolation theory, bond model      See Bond percolation
Percolation theory, contrast with diffusion      4
Percolation theory, counter-examples      47—48
Percolation theory, fundamental problems in, behaviour near threshold      50
Percolation theory, fundamental problems in, locating thresholds      49
Percolation theory, fundamental problems in, structural issues      51—52
Percolation theory, fundamental problems in, threshold problem      46—47
Percolation theory, general references      13—14
Percolation theory, history      4
Percolation theory, notational variation      19
Percolation theory, site model      See Site percolation
Percolation theory, variations, AB percolation      55—58
Percolation theory, variations, bipartite percolation      56
Percolation theory, variations, chain percolation      71
Percolation theory, variations, contact process      69—70
Percolation theory, variations, continuum percolation      68—69
Percolation theory, variations, correlated percolation      58
Percolation theory, variations, directed compact percolation      62
Percolation theory, variations, directed percolation      54 59—60 145 187 246 291
Percolation theory, variations, Domany — Kinzel model      60—62
Percolation theory, variations, first-passage percolation      69
Percolation theory, variations, invasion percolation      63—64 184
Percolation theory, variations, long-range models      64—66
Percolation theory, variations, Mandelbrot percolation      70
Percolation theory, variations, mole's labyrinth      71
Percolation theory, variations, multiparameter bond models      69
Percolation theory, variations, partially oriented percolation      66—68
Percolation theory, variations, percolation of coalescing random walks      70
Percolation theory, variations, percolation on quasilattices      70
Percolation theory, variations, polychromatic percolation      54
Percolation theory, variations, site-bond percolation      52—54 187 265
Percolation theory, variations, topologically disordered lattices      58—59
Percolation threshold, bounds      168—171
Percolation threshold, conjectured relation to random walks      172—173
Percolation threshold, conjectures and empirical results      173—175
Percolation threshold, for slice      125
Percolation threshold, known values for d=2      49
Percolation threshold, numerical estimates      175—188
Percolation threshold, of Bethe lattice      35
Percolation threshold, well defined if no middle phase      47
Percolation, bond      See Bond percolation
Percolation, site      See Site percolation
Perimeter polynomials      40 166
Phonons      458
Picture of a lattice, defined      276
Pivotal site      99
Plaquettes      144
Polya random walk      71
Polychromatic percolation      54
Potts model, correspondence with percolation      277
Potts model, introduced      274
Potts model, mean-field theory      280
Probability space      127
Propagator matrix      424
Proposition of Sykes and Essam      168
q-state Potts model, correspondence with percolation      277
q-state Potts model, introduced      274
q-state Potts model, mean-field theory      280
Quasicrystalline lattice, percolation conduction problem for      339
Quasicrystalline lattice, percolation thresholds      181
Quasilattices      70
Random cluster model      278
Random resistor problem in d dimensions      325—328
Random resistor problem in two dimensions      328—332
Random resistor problem, non-linear      332—333
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте