Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction
Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Nonlinear Hydrodynamic Modeling: A Mathematical Introduction

Автор: Shirer H.N.

Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1987

Количество страниц: 546

Добавлена в каталог: 08.01.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Parameters, physically interpreting unfolding      182 196
Parameters, response      131 140 156 292 293
Parameters, unfolding      174 175 182 196
Parseval property      496
Peixoto Theorem      397 398
Period of oscillation      51
Period, limiting      373 374
Period-doubling bifurcation      375 376
Period-doubling bifurcation, infinite sequence of      390 392 395 402 403 426 429 432
Period-doubling transitions      388 390 392 395 402 403
Periods, attractor      390 392 400 403
Periods, incommensurate      390
Perturbation of functional forms      164 165
Perturbation trajectory, linear evolution of      474 475
Perturbation, amplifying and unstable solution      34 70 71 362 364 365
Perturbation, behavior of and stability      70 79 359 367 465 468
Perturbation, damping of and stable solution      33 70 71 365
Perturbation, infinitesimal and stability      71 72
Perturbation, twist angle of and bifurcation      365 374 382
Pfaffian system      489
Phase angle of waveform      49
Phase space      11
Phase space volumes, evolution of      416 419 476
Phase space, appearance of waveforms in      49 54
Phase space, as closed and bounded      418
Phase space, deformation of      461
Phase space, dimension of      413
Phase space, in      48 54 460 461
Phase space, manifold in      84 486
Phase space, shifting origin in      167 271
Phase space, stable and unstable manifolds in      79 85 469 496
Phase-locked stationary solution      50
Phases of scientific study      2 3
Physical effects, representing by parameters      121 130 183 193
Physical space      48 49
Physical space, space      49 54
Physical systems, equivalent      182 191 193
Physical systems, reduced      446 447
Physical systems, unfolded      195
Picard Existence and Uniqueness, Theorem      492
Pitchfork branching form      44
Poincare disk or section      374 381 396 399 431
Poincare map      372 383 396 399 413 431
Poincare map for a strange attractor      413 414
Poincare map, definition of      373 396
Points at infinity      228 232
Poisson inequalities      451
Polynomial division      510
Polynomial equations and roots at infinity      228 236
Polynomial equations for branching periodic solutions      271 277 290
Polynomial equations for stationary solutions      112 118 167 172 177 178 225
Polynomial equations, finding common roots to      510 516
Polynomial map, definition of      226
Polynomial map, homogeneous      230
Polynomial map, homogenization of      228 236
Positive definite matrix      503 504
Power series method for branching for ordinary differential equations      326 341
Power series method for branching for partial differential equations      326 331 332 338
Power spectra and turbulence      386 389
Prandtl number, definition of      7 28 132 299 448
Prandtl number, solutions      119 121
Predictability      11 404 407 412 431 434 442 465
Predictability and Lyapunov exponents      417 431 434
Predictability problems and decision points      82 84 382 407 433
Predictability problems and initial errors      406 407
Predictability problems and unstable solutions      82 84
Predictability, gain or loss of      432
Predictability, limitations on      453 454
Predictability, solutions      404 407 431 432
Prediction limits      7 9 11
Preferred values of parameters, in convection      111 131 138
Preferred values of parameters, in convection with a background wind      292 295 296 304 308 314 324
Preferred values of parameters, in rotating convection      143 163
Pressure gradient force      25
Primary bifurcation point, definition of      87
Primary bifurcation point, double and nearby bifurcations      199 206 211 214 215 401
Primary branch, branch      197 198 204 206 210 218
Primary branch, definition of      87
Primary branch, expected stabilities for      92 100
Primary branch, solution      94 99
Primary branch, subcritical (definition)      87
Primary branch, supercritical (definition)      87
Principal frequencies in flow and transition to turbulence      384 390
Probabilistic expectation over an, ensemble      497
Projective space      234 236
Proper Orthogonal Decomposition Theorem and basis functions      496 504
Proper Orthogonal Decomposition Theorem, sketch of proof of      498 500
Pull-back of an unfolding      175 177
Pull-back operation and loss of clarity      176 177
Pull-back operation and loss of information      176 177
Quadratic polynomial equation for stationary solutions      115 116
Quartic polynomial equation for stationary solutions      116 118
Quasi-geostrophic flow in a channel      114 115 194 195 257
Quasi-geostrophic flow in atmosphere      496
Quasi-periodic flow      386 392
Quasi-periodic function      389 391
Quasi-periodic solution      377 380 396 399 403 424 427
Quasi-periodic two-torus      424 427
Quintic polynomial equation for amplitude of periodic solution      275 277
Quintic polynomial equation for stationary solutions      117 118 154 155 194 196
Random noise in system      423
Rank of a matrix      168
Rayleigh number, critical      (see Critical Rayleigh number)
Rayleigh number, definition of      7 28 107 132 299
Rayleigh number, normalized      29
Rayleigh number, physical interpretation of      109
Rayleigh-Benard convection in presence of a height-dependent background wind      (see Boussinesq system with background wind
Rayleigh-Benard convection, classical      (see Classical Rayleigh-Benard convection)
Rayleigh-Benard convection, rotating      (see Rotating convection)
Rayleigh-Benard convection, spherical      408 409
Recurrence properties of trajectories and attractor dimensions      420 423
Recurrent point      464
Recurrent trajectory      405
Reduced partial differential equations for the atmosphere, condition for stability in      456 457
Reduced partial differential equations for the atmosphere, equations for      450
Reduced partial differential equations for the atmosphere, Jeffreys' Theorem for      452
Reduced partial differential equations for the atmosphere, Trapping Theorem for      452 (see also Canonical partial differential equations for the atmosphere)
Reduced spectral model for the atmosphere, basis functions for      459
Reduced spectral model for the atmosphere, equations for      465
Reduced spectral model for the atmosphere, instability process in      465 468
Reduced spectral model for the atmosphere, Jeffreys' Theorem for      464
Reduced spectral model for the atmosphere, optimum truncation for      501 504
Reduced spectral model for the atmosphere, Reduction of complexity of models      457 460 464 484 504
Reduced spectral model for the atmosphere, stability of nontrivial solution in      466 468
Reduced spectral model for the atmosphere, stability of trivial solution in      465 466
Reduced spectral model for the atmosphere, stationary solution in      465
Reduced spectral model for the atmosphere, Trapping Theorem for      465 503 504
Regime selection      7 9 453
Regime transition as a bifurcation      469
Regime transition as given by loss of stability      464 469
Regimes of flow in rotating annulus      8 9
Regimes of flow, convective      7 8 384 390
Regimes of flow, distinguishing in data      386 390
Regimes of flow, frequency-locking in      388 390
Regimes of flow, generic      8 384
Regimes of flow, modeling of      446 447
Regimes of flow, optimum spectral models for      496 500 501
Regular turning point in branching stationary solutions      98 100 104 117 118 122—125 129 130 132 155 163
Regular turning point in branching temporally periodic solutions      276 329 331 351
Regular turning point, physical relevance of minimizing values of Ra at      155 157
Repelling direction      79 85 416 420 468 469
Resonating terms      336
Response parameters      131 140 156 292 293
Restricted attractor      438 439
Return map      (see Poincare map defined)
Reverse Jacobian matrix and tangent vectors of unstable manifold      476 477
Reverse Jacobian matrix, definition of      475 476
Reverse Jacobian matrix, relation with Jacobian matrix      476 477
Reynolds number for global atmospheric flows      456
Reynolds number, critical      (see Critical Reynolds number)
Reynolds number, definition of      7 280 299
Reynolds stress in partial differential system      281 282 300 453
Reynolds stress in spectral model      285 303 304 310
Richardson number      323 324
Roll axis      279
Roll circulation, expected sense of      122
Roll coordinate system      279 280 293 294
Roll energetics in partial differential equations      281 282 299 300
Roll energetics in spectral model      284 285 290 291 302 304 310 311
Roll energetics, effects of Coriolis terms on      296 300 303
Roll kinetic energy in partial differential system      299
Roll kinetic energy in spectral model      302 310
Rolls in atmosphere      292 294 Inflection Parallel and
Rolls in atmosphere in laboratory vessel      292
Root line      233
Roots at infinity      228 232 236 256 257 262 263
Roots at infinity, finite representation of      234
Rotating convection      140 163
Rotating convection, bifurcation diagram for      117 118 156 159
Rotating convection, bifurcation points in      142 146
Rotating convection, boundary conditions for      142
Rotating convection, expected branching direction for      153 163
Rotating convection, expected type of branching solution in      146 153
Rotating convection, finding appropriate spectral model for      326
Rotating convection, hypothetical larger model of      155 157
Rotating convection, partial differential equations for      140 141
Rotating convection, preferred wavelengths in      144 154
Rotating convection, spectral model for      (see Veronis model)
Rotating convection, unfoldings of      194 195
Rotation number      396 398
Routes to chaos      389 403
Routes to chaos and attractor dimensions      424 426
Routes to chaos and Lyapunov exponents      424 428
Routes to chaos, classification of      400 404
Routes to chaos, Feigenbaum's conjecture for      390 395 403 426
Routes to chaos, Landau's hypothesis for      389 392 400 424 425
Routes to chaos, Ostlund et al.'s conjecture for      390 395 399 402 403 426—427
Routes to chaos, Ruelle and Takens conjecture for      391 392 395 401 403 425—426
Routes to chaos, Shirer and Wells conjecture for      392 400 404 427
Routes to chaos, subcritical bifurcation      390 427 428
Routes to chaos, summary of hypothesized      390
Ruelle matrix and Lyapunov exponents      478 479
Ruelle matrix, forward      473 477 478 488
Ruelle matrix, reverse      476 477 479 488
Ruelle — Takens conjecture      391 392 395 401 403 425 426
Ruelle — Takens turbulence      385
Ruelle's Theorem and finding optimum spectral models      487 496
Ruelle's Theorem and refined unstable manifolds      495 496
Ruelle's Theorem, finding stable manifolds with      473 477 478 487 488 493—494
Ruelle's Theorem, finding unstable manifolds with      474 477 479 487 488
Ruelle's Theorem, simple example of applying      479 484
Ruelle's Theorem, statement of      473
Ruelle's Theorem, time reversal in      474 477 479 488
Saltzman model      37 39 198 206 408
Sard's theorem      237 238
Scale selection      446
Schwarz inequality      452 456 462
Scientific questions, significant      7
Secondary bifurcation point and double primary bifurcation point      204 206 211 214 215 401
Secondary bifurcation point, definition of      87
Secondary branch, branch      197 198 204 206 210 218 401 408 411
Secondary branch, definition of      87
Secondary branching      197 224
Secondary branching and catalytic terms      207 208 211
Secondary branching, asymmetric and cell broadening      218 223
Secondary branching, chaos      402 403
Secondary branching, diagnosing possible      198 206
Secondary branching, originating from Jacobian term      210 211
Selection rules      64 198
Self-adjoint system      339
Semi-periodicity      393
Sensitive dependence on initial and Lorenz attractor      404 407
Sensitive dependence on initial, as property of turbulence      384
Sensitive dependence on initial, quantifying      417 420 423 425
Sensitive dependence on initial, represent turbulence      390 398
Separable solutions, to eigenvalue problems      58 59
Shallow Boussinesq equations      23 31
Shape of attractor      84
Shear production term      282
Shifting the trident branching form for stationary solutions      119 122
Shifting the trident branching form for temporally periodic solutions      274 275
Shirer      198
Shirer and Wells conjecture      392 400 404 427
Shirer and Wells model      191 193
Shirer, bifurcation points in      305 308 322 324
Shirer, characteristic equation for      286
Shirer, energetics of      302 304
Shirer, equations for      301 302
Shirer, expansions for      301
Shirer, instability case in      305 306 314 321
Shirer, mixed parallel and thermal mode in      307 308 322 324
Shirer, parallel instability case in      306 307 314 321
Shirer, periodic solution in      287
Shirer, temporally periodic solutions in      288 291
Singular points and exchange of stability      128 130
Singular points, as bifurcation points      128 172 194
Singular points, definition of      125
Singular points, types of      128 178
Singularity, codimension of      178 196
Singularity, unfoldings of      174 182
Snap-through bifurcation      96 97 100 117 330 331
Solution surface      119 121 125 130
Solutions and unstable manifolds      469 470 483 488
Solutions, in grid-point and spectral models      219
Solutions, N-dimensional approximations of      446 447 460 461
Solutions, space      267
Spectral bands      5 10
Spectral expansions, finding      55 60
Spectral expansions, general form of for convection      61 62
Spectral models as dynamical systems      415 416 421 487 488
Spectral models, advantages of using      11 48
Spectral models, appropriate truncation level for      326
Spectral models, as projections on N-space      447
Spectral models, comparisons of solutions with those of a grid-point model      219
Spectral models, existence of solutions in      462 463
Spectral models, forming      60 69 457 461
Spectral models, forming optimum      485 504
Spectral models, general forms of      72 87 166 359 460 465 473 487 488
Spectral models, hierarchical      495 496
Spectral models, optimum      (see Optimum spectral models)
Spectral models, reduction of      (see Optimum spectral models)
Splitting the trident branching form      122 130 164 165 183
Spurious roots      510 511
Stability analysis and secondary bifurcation      198 206 209 218
Stability analysis for branching, energy method for      355 357
Stability analysis for branching, integration method for      357 372
Stability analysis for branching, power series method for      326 341
Stability analysis for stationary solutions      70 79 92 100 465 469
Stability analysis, as first step in nonlinear analysis      34 35 70
Stability change, conditions for      75 92
Stability exchange and expected branching solution      138 139
Stability exchange, periodic solutions      372 383
Stability exchange, solutions      92 105 269 466 469
Stability portrait (or profile)      95 100
Stability properties of the conductive and bifurcation      70 109 111
Stability properties of the conductive and secondary branching      199 206
Stability properties of the conductive, in Boussinesq system      35 37 109 119 199 206
Stability properties of the conductive, in Chang and Shirer model      208 212 222
Stability properties of the conductive, in Lorenz model      41 42 77 92 112
Stability properties of the conductive, in Stensrud and Shirer model      312 321
Stability properties of the conductive, in Veronis model      142 163
Stability properties of the conductive, model      306 308 314 324
Stability properties, general comments on      100 105
Stability transfer, branches      204 206 211 218
Stability, asymptotic orbital      (see Asymptotic orbital stability)
Stability, concept of for stationary solutions      70 71
Stability, exchange of at bifurcation point      34 37 77 92 100 128 130 269 325 373 383
Stability, global      72 108 111
Stability, infinitesimal      72
Stability, neutral      71
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте