Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Betensky R.A., Talcott J.A. — Binary data with two, non-nested sources of clustering an analysis of physician recommendations for early prostate cancer treatment
Betensky R.A., Talcott J.A. — Binary data with two, non-nested sources of clustering an analysis of physician recommendations for early prostate cancer treatment



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Binary data with two, non-nested sources of clustering an analysis of physician recommendations for early prostate cancer treatment

Авторы: Betensky R.A., Talcott J.A.

Аннотация:

A prospective cohort study of men with newly diagnosed early prostate cancer was undertaken (Talcott et al., 1998) in order to evaluate both the patient-level and the physician-level determinants of physician recommendations for radical prostatectomy (surgery) versus radiation therapy. Each patient sought recommendations from as many as six physicians, and each physician provided recommendations for as many as 113 patients. Thus, the recommendations are clustered within physician and within patient. While methods have been developed for binary data with multiple-nested sources of clustering, they have not been fully explored for binary data with non-nested sources of clustering, such as the treatment recommendations. Here we propose reclustering the data to form binary data with one source of clustering. Because the reclustered data result in one very large cluster and several clusters of size one and two, marginal logistic regression models for the probability of a recommendation of surgery fit using a generalized estimating equation approach would produce unreliable estimates of uncertainty for the parameters. Thus, in addition to the mean model, we attempt to model the associations in as much detail as possible. We compare this model to a mixed-effects model that implicitly adjusts for both sources of clustering and to models based on the assumption of conditional independence with regard to one source of clustering.

Keywords: Association model; Generalized estimating equations; Multiple informants; Patient–doctor communication; Reclustering.


Язык: en

Рубрика: Медицина и здравоохранение/

Тип: Статья

Статус предметного указателя: Неизвестно

ed2k: ed2k stats

Год издания: 2000

Количество страниц: 12

Добавлена в каталог: 25.11.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2021
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте