Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Slater J.C., Frank N.H. — Mechanics
Slater J.C., Frank N.H. — Mechanics



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mechanics

Àâòîðû: Slater J.C., Frank N.H.

Àííîòàöèÿ:

The study of mechanics is presented as the fundamental basis of the electromagnetic theory, quantum mechanics, and all theoretical physics. Mathematical difficulty and order of historical development have determined the order of presenting the material.


ßçûê: en

Ðóáðèêà: Ìåõàíèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1983

Êîëè÷åñòâî ñòðàíèö: 297

Äîáàâëåíà â êàòàëîã: 14.11.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Admittance      31 33
Alpha particle, scattering of      65
Angles, Euler’s      104 107—120
Angular momentum of rotating rigid body      92—120
Angular rotation, lack of vector character of      102—104
Anharmonic oscillator      40 42
Approximate solution for nonuniform string      183—186
Archimedes’ Principle      230 236
Aristotle      1
Artificial electric line, analogy to weighted string      151 178
Associated Legendre polynomials, or associated spherical harmonics      205
Atwood’s machine      86
Axis of rotation, instantaneous      95—96
Beats      35 168
Bent beam      222
Bernoulli’s equation      232—233
Bessel’s equation and function      181 200—204 240—241 251—252 288 289
Body forces in hydrodynamics      230
Body forces, in elasticity      206
Boundary conditions, for circular membrane      200—204
Boundary conditions, for rectangular membrane      197
Boundary conditions, for string      148 175 185—186
Center of mass      91
Central field, motion in      52—68
Centrifugal force      57
Circular membrane      199—204
Coefficients, of Fourier series      150 279 284
Coefficients, of viscosity      233
Combination tones      42
Complex exponentials and complex, numbers      26 255—257
Compressibility of elastic solid      214
Conductance      31
Conservation of energy      13—16 46—52 77
Conservative system, condition for      13 46—52
Constraints      70 79
Continuity, equation of      226—227
Continuous medium      206—237
Convergence, of Fourier series      281
Convergence, of power series      244—250
Coordinates, curvilinear, vector operations in      285—287
Copernicus      1
Coriolis force      56
Coulomb’s law      53—54
Coupled systems      122—140
Curl, in curvilinear coordinates      286
Curl, of a vector      148 231—232 266
Curvilinear coordinates      285—287
Damping of vibrating string      160—161
Damping, critical      25
Damping, logarithmic      27
Decrement, logarithmic      27 29
Deformation of elastic solid      211—215
Degeneracy, in circular membrane      202
Degeneracy, in coupled oscillators      135—136
Degeneracy, in square membrane      204
Degrees of freedom      70
Determinant      127 275
Difference equations      239—242
Differential analyzer      8 294
Differential equations, general properties of      6
Differential equations, linear, properties of      7 24 33 34
Differential equations, numerical solution of      8 239—242
Direction cosines      259
Discontinuities in functions, Fourier representation of      281
dispersion      23 167—169
Divergence of a vector      226—227
Divergence theorem      267—269
Divergence, in curvilinear coordinates      286
Double Fourier series      199
Double pendulum      141
Eccentricity of conic section      58
Elastic constants      213—223
Elastic solid      206—223
Elastic waves      217—222
Electric circuit      4 27—29
Electric circuit, oscillations of      27—29
Electromagnetic theory      2 6 15 22—23
ellipse      58—62
Ellipsoid, energy      132—133
Energy      7 9—16 38—40 46—52 57 62—66
Equation, in normal coordinates      160
Equation, mechanical, generalized coordinates      69—79
Equation, of continuity      226 227
Equation, of fluid, ideal      229—233
Equation, of membrane      195—196
Equation, of motion of elastic solid      217—219
Equation, of rigid body      90—95 105 109—112
Equation, of string      146
Equation, variable      181
Equation, viscous      233—235
Equations, difference      239—242
Equilibrium, stable      13
Equinoxes, precession of      120—121
Equipotential surfaces      50—51
Euler’s angles      104 107—120
Euler’s equations for rigid body      105 111
Euler’s equations of hydrodynamics      229—233
Even functions      282—283
Expansion in normal functions for variable string      186—188
Expansion, Fourier      21 144 150 279 284
Exponential solution of vibrating particle      25—36
Exponential solution of vibrating rectangular membrane      196—198
Exponential solution of vibrating string      147—149
Exponential string      182—183
Exponential, complex      255—257
External forces generalized coordinates of      71—77
External forces on coupled oscillators      137—140
Falling body      7 10—11
Field, central      52—68
Filter, weighted string as      170
Flow of fluids      224—236
Flow, lines of      224—229
Fluids, flow of      224—236
Flux      225—229
Force, external      (see External forces)
Force, generalized      73
Forced vibrations, of coupled oscillators      137—140
Forced vibrations, of particle      21 29—38
Forced vibrations, of string      161
Fourier series      21 144 150 279—284
Fourier series, double      199
Function space      159 189
Functions, odd and even      282—283
Functions, power-series representation of      243 254
Galileo      1
Gauss’s theorem      267—269
Generalized coordinates, equations of motion in      70—88
Generalized coordinates, vector operations in      285—287
Generalized force      73
Generalized force in vibrating string problem      160
Generalized momentum      71—78
Geophysical problems with elastic waves      219—220
Gradient, in curvilinear coordinates      285
Gradient, of a scalar      48 265—266
Gravitational constant      53
Group velocity      168—169
Half width of resonance band      32
Hamiltonian function      174—179
Hamilton’s equations of motion      74—79
Harmonics      149—162 165
Hooke’s law      21 24 211—223
Hooke’s law, modified for viscous fluids      233—234
Huygens      1
Hydrostatic pressure      208 230
Hyperbola      58—62
Ideal fluid      229 233
Impedance      31
Inertia, moment and products of      96—97
Infinite series      243—254
Initial conditions, for circular membrane      202—204
Initial conditions, for rectangular membrane      198—199
Initial conditions, for string      149 150
Initial conditions, for transient vibrations of particle      25—27
Instantaneous axis      95
Integral, line      46 49 269
Inverse-square law      58—66
Irrotational flow      228—229 232—233
Kepler’s laws      1 60—61
kinetic energy      9—16 71—75 126
Kinetic energy of rigid bodies      97 101
Lagrange, hydrodynamic equation of      231—232
Lagrange’s equations      69—88
Lagrange’s equations for coupled particles      133—134
Lagrange’s equations for rotating body      109—120
Lagrange’s equations for weighted string      160
Lagrangian function      74
Lagrangian function with magnetic field      87
Lagrangian function with relativity      88
Laplace’s equation, for velocity potential      229 232
Laplacian      195 266—267
Laplacian in curvilinear coordinates      286
Larmor precession      121
Legendre polynomials, associated      205
Legendre’s equation      205
Line integrals      46—49 269
Linear differential equation, properties of      24 33 34
Linear restoring force      21—42
Lines of flow      224—229
Lines of force      50
Liquids, flow of      224—236
Lissajous figures      137
Longitudinal waves in elastic solid      219
Membrane, vibrations of      193—205
Moment of inertia      56 96—97
Momentum of jet      5
Momentum, angular      56 73
Momentum, generalized      71—78
Motion in several dimensions      43—68
Motion of rigid bodies      89—121
Motion of several particles      90—94 122—142
Motion, Newton’s law of      2 4 44 69 71—73 92 218
Neumann functions      201 252 288—289
Newton      1 (see also Motion)
Nodal line, Euler’s angles      108
Nodes in vibrating membrane      202
Nonconservative systems      46
Nonuniform string      180—192
Normal coordinates      122—140 156—161
Normal functions for vibrating string      149—162
Normal modes      127—140 149—162 185- 188
Normal stresses      208 296
Normalization, of coupled systems      129—130
Normalization, of nonuniform string      187
Normalization, of weighted string      157
Numerical integration      8 239—242
Nutation      86 120
Odd functions      282—283
Orbits, central motion of      58—66
Orthogonality      262—264 275—276
Orthogonality of Bessel's functions      204
Orthogonality of coupled systems      129—130
Orthogonality of nonuniform string      186—187
Orthogonality of sine and cosine      144 150 159
Orthogonality of weighted string      157
Oscillations, of electric circuit      23—24 30—31
Oscillations, simple harmonic      21—24
Oscillator, anharmonic      40 42
Oscillator, coupled      122—140
Oscillator, linear      21—42
Oscillator, nonlinear      40 42
Overtone      149—162 185—188
Pendulum, spherical      79—86
Perturbation theory of nonuniform string      188—190
Plane waves, elastic      218—221
Planetary motion      58—66
Poiseuille’s law      233—235
Poisson’s ratio      216 222
Pole of function      245
Polynomials, Legendre’s      205
potential energy      9—16 62—66
Potential, velocity      228—229
Power series      8 243—255
Power-series solution for differential equations      243—254
Precession      112—120
Pressure, in elasticity      208
Pressure, in hydrodynamics      230
Principal axes, of coupled systems      130
Principal axes, of inertia      98—105
Principal axes, of stress      209—211
Products, of inertia      97
Products, of vectors      259—261
Progressive waves      163—170
q      27—38 139 176
Quantum theory      3 23 64—65 77 278
Radial motion in central field      57 62 64
Reactance      31
Rectangular membrane      196—199
Reflection, of elastic waves      219—220
Reflection, of waves on strings      170—177
Relativity, theory of      5 19
Resistance      31
Resonance      22 29—38 138—139 176
Rest mass      5
Rigid bodies      89—121
Rolling-ball analogy      13
Rotating system of axes, vector in      95
Rotation of coordinates      261—264 277
Rumford      14
Rutherford      65
Scalar product      260
Secular equation, for coupled oscillators      128 152
Secular equation, for perturbation theory      189—190
Separation of variables, method of      147 194—202
Series, Fourier      21 144 150 279—284
Series, power      8 243—255
Several particles, general problem of motion of      90—94 122—142
Shearing stress and strain      208—211
Simple harmonic vibrations      21—42
Singularity of function      245
Solids, elastic      206—223
Sources and sinks      226—227
Spherical harmonics      205
Spherical pendulum      79—86
Square membrane, degeneracy of      204
Stable equilibrium      13
standing waves      149 170—177
Statistical mechanics      78
Steady flow of fluids      227
Stokes’s theorem      48 269—271
Strains in elastic solid      211—223
Streamlines      226—229
Stresses in elastic solid      206—223
String, vibrations of      143 192
Sturm — Liouville equation      188
Superposition of transient and forced motion      33—38
Surface forces      206—223
Susceptance      31
Symmetrical top      107—120
Symmetry of stress tensor      210
Taylor’s      243—252
Tensors      96—97 207—223 272-278
Top, precession of      115—120
torque      56 73 98
Torque, due to shearing stress      210
Torque-free motion of symmetrical rigid body      112—115
Transients      21 33—38
Transients, initial conditions for      34 35
Transverse waves in elastic solid      219
Traveling waves      148
Tubes of flow      225 229
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå