Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Jeffreys H. — Methods Of Mathematical Physics
Jeffreys H. — Methods Of Mathematical Physics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods Of Mathematical Physics

Автор: Jeffreys H.

Аннотация:

METHODS OF MATHEMATICAL PHYSICS by HAROLD JEFFREYS, M. A., D. Sc., F. R. S. Plumian Professor of Astronomy, University of Cambridge, and Fellow of St Johns College and BERTHA SWIRLES JEFFREYS, M. A., Ph. D. Felloiv and Lecturer of Girton College SECOND EDITION CAMBRIDGE At the University Press 1950 PUBLISHED BY THE SYNDICS OF THE CAMBRIDGE UNIVERSITY PRESS London Office Bontley House, N. W. I American Branch New York Agents for Canada, India, and Pakistan Macmillan First Edition 1946 Second Edition 1950 Printed in Oreat Britain at the University Press, Cambridge Brooke CrutcMey, University Printer Preface This book is intended to provide an account of those parts of pure mathematics that are most frequently needed in physics. The choice of subject-matter has been rather difficult. A book containing all methods used in different branches of physios would be impossibly long. We have generally included a method if it has applications in at least two branches, though we do not claim to have followed the rule invariably. Abundant applications to special problems are given as illustrations. We think that many students whose interests are mainly in applications have difficulty in following abstract arguments, not on account of incapacity, but because they need to see the point before theit Interest can be aroused. . v A knowledge of calculus is assumed. Some explanation of the standard of rigour and generality aimed at is desirable. We do not accept the common view t at any argument is good enough if it is intended to be used by scientists. We hold that it is as necessary to science as to pure mathematics that the fundamental principles should be clearjy stated and that the conclusions shall follow from them. But in science it is also necessary that the principles taken as fundamental should be as closely related to observation as possible it matters little to pure mathematics what is taken as fundamental, but it is of primary importance to science. We maintain therefore that careful analysis is more important in science than in pure mathematics, not less. We have also found repeatedly that the easiest way to make a statement reasonably plausible is to give a rigorous proof. Some of the most important results e. g. Cauchys theorem are so surprising at first sight that nothing short of a proof can make them credible. On the other hand, a pure mathematician is usually dissatisfied with a theorem until it has been stated in its most general form. The scientific applications are often limited to a few special types. We have therefore often given proofs under what a pure mathematician will consider unneces sarily restrictive conditions, but these are satisfied in most applications. Generality is a good thing, but it can be purchased at too high a price. Sometimes, if the conditions we adopt are not satisfied in a particular problem, the method of extending the theorem will be obvious but it is sometimes very difficult, and we have not thought it worth while to make elaborate provision against cases that are seldom met. For some exten sive subjects, which are important but need long discussion and are well treated in some standard book, we have thought it sufficient to give references. We consider it especially important that scientists should have reasonably accessible statements of conditions for the truth of the theorems that they use. One often sees a statement that some result has been rigorously proved, unaccompanied by any verifica tion that the conditions postulated in the proof are satisfied in the actual problem and very often they are not. This misuse of mathematics is to be found in most branches of science. On the other hand, many results are usually proved under conditions that are sufficient but not necessary, and scientists often hesitate to use them, under the mistaken belief that they are necessary...


Язык: en

Рубрика: Физика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 716

Добавлена в каталог: 04.07.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
erf x      403 570
Ergodic theorem      167
Essential singularity      357 367
Essential singularity, isolated      359 367
Euclid      5 57
Euler pendulum      248
Euler — Maclaurin formula      279 280 406 466 499
Euler's angles      108
Euler's constant      282 402 470
Euler's equations      110
Euler, L.      261 370 436 472 669 679
Everett's formula      269
Ewald, P.P.      157
Explosion wave, cylindrical      595
Explosion wave, spherical      560
Factorial function      185 401 462
Fermat's principle      318
Ferrar, W.L.      122 138
Figure of Earth      643
Fletcher, A.      695
Fluctuation      24
Fluid, heated below      442
Fluid, motion of      97 695
Flux      195
Fourier series      368 430
Fourier series, cosine series      437
Fourier series, differentiation of      441
Fourier series, integration of      440
Fourier series, sine series      437
Fourier — Bessel expansion      591
Fourier — Mellin theorem      458
Fourier's integral theorem      452
Fourier, J.      436 566
Fresnel integrals      473 506
Frobenius, method of      482
Frullani integrals      406
Fuchs, L.      229
Functions of complex variable      337
Functions of real variable      17
Functions of several variables      176
Functions of two variables      36
Fundamental magnitudes      3
Galitzin seismograph      250
Gamma function      see "Factorial function"
Gaunt, J.A.      312 641
Gauss — Jackson, (J.), method      300 693
Gauss's $\Pi$ function      see "Factorial function"
Gauss's theorem      201 209
Gauss, C.F.      464 472
Germane units      4
Gibbs (Willard) phenomenon      445
Gibson, G.A.      196
Glauert, H.      423 699
Goedel, K.      2
Goldstein, S.      304 404 405 444 487 527 604 612 696
Goursat, E.      21 342 345 347 691
graphical methods      290
Grassmann, H.G.      155
Gray, A., Matthews, G.B., and MacRobert, T.M.      577
Green's equivalent stratum      218
Green's function      220 221 495 543 634
Green's lemma      193 345
Green's theorem      195 692
Green, G.      524
Gregory, James      265 284 286
Group velocity      512
Guggenheim, E.A.      4
Gyroscopic systems      145 254 331
Hall, P.      133
Halphen, G.H.      667
Hamilton — Jacobi equation      325
Hamilton's equations      326
Hamilton's principle      318 320
Hardy, G.H.      15 42 436 461 524
Harkness, J., and Morley, F.      362
Harmonic analysis      429 449
Harmonic oscillation of finite duration      459
Harmonic wave train, interrupted      518
Hartree, D.R.      300 570 622 668
Hasse, H.R.      488
Heat conduction      529 563 600
Heat, line source of      604
Heat, periodic supply of      572
Heaviside's unit function      18 244 393
Heaviside, O.      18 230 238 254 266 563 568 577 579 602 700
Heine — Borel theorem      20 175 364 691
Heine, E.      21 648 656
Helmert, F.R.      645
Henderson, J.B.      4
Hermite functions      620
Hermitian forms      136
Hermitian matrices      117 133 137
Hill, G.W.      487 488
Hobson, E.W.      22 173 541 650
Hoelder, O.      211
Horner, W.G.      275 692
Hurwitz, A., and Courant, R.      362
Hydrodynamics, complex potential      412
Hydrodynamics, sources and sinks      201
Hydrogen molecular ion      488
Hydrogen-like atom      618
Hyperbolic equations      531
Hypergeometric function      606
Idelson, N.      222
imaginary numbers      see "Complex numbers"
Improper integrals      33
Ince, E.L.      520 543 696
Incomplete factorial function      498
Increasing functions      23
Indicial equation      478
Indirect proof      8
Induction, mathematical      9
Inertia tensor      95
Infinite determinants      488
Infinite instability      392
Infinite integrals      33
Infinite products      53
infinity      12
Ingen-Hausz's experiment      568
Ingersoll, L.R.      571
Inner product      115
Instrument, response of      460
Integral equations      167 405 457 473 496
Integral function      352 362
Integrals, change of variable      33 182
Integrals, double      180
Integrals, principal value      376
Integrals, repeated      180
Integration      26
Integration by parts      32
Integration, change of variable      33 182
Integration, complex      343 348
Integration, numerical      278
Integration, numerical of $x^{i}f(x)$, $x^{-i}f(x)$      289
Integration, numerical, central difference      284
Integration, numerical, Euler — Maclaurin      279
Integration, numerical, Gauss      288
Integration, numerical, Gregory      283
Integration, numerical, Simpson      286
Integration, numerical, three-eighths rule      287
Integration, numerical, Weddle      287
Interpolation      261
Interpolation, Everett      269 272
Interpolation, Gregory      265
Interpolation, inverse      274
Interpolation, Lagrange      261
Interpolation, Newton      263
Interpolation, Newton — Bessel      269 272 692
Interpolation, Newton — Gauss      268
Interpolation, Newton — Stirling      268
Intervals, closed      19
Intervals, nests of      6
Intervals, open      19
Inverse functions      23 379
Irrotational vector      196
Jackson, D.      431 459
Jackson, J.      300
Jacobi's imaginary transformation      683
Jacobi's theorem (determinants)      135
Jacobi's theorem (dynamics)      327
Jacobi, C.G.J.      382 681
Jacobian elliptic functions      669
Jacobians      182
Jahnke, E., and Emde, F.      577
Jeans, J.H.      634
Jeffreys, B.      527
Jeffreys, H.      57 84 87 229 276 304 399 444 451 460 490 524 527 563 568 600 695
Jentzsch, R.      372
Jordan's lemma      392
Joukowsky aerofoils      423
Joukowsky transformation      422
Kellogg, O.D.      191
Kelvin      501 506
Kinetic theory of gases      167 202
Klein bottle      188
Kneser, A.      543
Knopp, K.      10 12
Kramers, H.A.      662
Kronecker $\delta$      59
Lagrange's equations      321 324
Lagrange's expansion      382
Lagrange's interpolation formula      261
Laguerre polynomials      619
Lamb, H.      142 463 524 597 604 621 697
Lame functions      541
Lame's constants      102
Landau, E.      368
Landen's transformation      688
Language, mathematics as a      2
Laplace transform      458
Laplace's equation      198 202 339 437 528 658
Laplace's equation, uniqueness theorems      215 216 217
Laplace, P.S.      254 457 485 650
Larmor, J.      161
Latent roots      127
Laurent's theorem      366 694
Laurent's theorem, three-dimensional analogue of      639
leap      22 26
Least action      330
Leathern, J.G.      427
Lebesgue integral      29
Lebesgue, H.      192 695
Legendre, A.M.      467 628 633 647 668 691
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте