Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Buzaglo M. — Logic of Concept Expansion
Buzaglo M. — Logic of Concept Expansion



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Logic of Concept Expansion

Àâòîð: Buzaglo M.

Àííîòàöèÿ:

Scientists and mathematicians frequently describe the development of their field as a process that includes expansion of concepts. Logicians traditionally deny the possibility of conceptual expansion and the coherence of this description. Meir Buzaglo's innovative study proposes a way of expanding logic to include the stretching of concepts, while modifying the principles which apparently block this possibility. He offers stimulating discussions of the idea of conceptual expansion as a normative process, and of the relation of the conceptual expansion to truth, meaning, reference, ontology, and paradox, and analyzes the views of Kant, Wittgenstein, Godel, and others, paying especially close attention to Frege. His book will be of interest to a wide range of readers, from philosophers (of logic, mathematics, language, and science) to logicians, mathematicians, linguists, and cognitive scientists.


ßçûê: en

Ðóáðèêà: Ôèëîñîôèÿ, ðåëèãèÿ è êóëüòóðà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2002

Êîëè÷åñòâî ñòðàíèö: 194

Äîáàâëåíà â êàòàëîã: 23.05.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"essence" of a concept      83—85
"Following a rule"      144
"Inertia, Law of"      25
"Unsaturated" concepts      83
"What is Cantor's Continuum Problem?” (Goedel)      127
Absolutely forced expansions      56—57
Addition, laws of      19
Algebra      9 15—18 67 69
Algebra of negative numbers      106—109
Algebra, extension of fields      98—99
Alster, Gall      62n
Ambiguous sentences      142
Analogies      146—147 171
Analytic functions      31 51—52 57 130
Antinomies      ix 21 149 151—156 158n 166
Applications of expansions      22 65—66
Aristotle      27 78
Arithmetic      2 3 15 16—18 88—89
Arnauld, Antoine      10
Axioms from constraints to      103—109
Axioms of comprehension      167
Axioms of logic      152
Benacerraf, Paul      114
Berkeley, George      11
Bernoulli, Johann      13—14 60
Boole, George      19
Boolos, George      162n
Boundaries      87—90 150—153
Brouwer, Luitzen      20 173
Calculus, differential      11
Cantor, Georg      44 127 155
Cantor, Georg, concept of number      57 75
Cantor, Georg, infinite numbers      125
Cantor, Georg, transcendental numbers      65 77 78
Cantor, Georg, Wittgenstein on      146—147 148
Cardinality      44 49—50 65 125
Cauchy's integral formula      67—68
Chain of extension      73 75—76 78
Characteristics of concepts      74
Characteristics of forced expansions      54—59
Classifying expressions      163—168
Cognition      15
Cohen, Paul      50
Community and concepts      28—29
Commutative law      18 108
complex numbers      51 69 108 109
Complex numbers, acceptance of      10—12
Complex numbers, Cauchy's formula      67—68
Compositionality      32 34—35
Computability      121
Conjunction      19
Consistency after expansion      101 159 162—163
Constraints      103—109 143
Context of discovery      103
Cosine function      85
De Moivre's theorem      69
Decomposition      34—35 67
Dedekind, Richard      19
Deduction      3 23 54—57 59 60—63 95
Definitions and family resemblance      83—85
Demarcation problem      150—153
Denumerable sets      65—66
Determinacy of concepts      30—35
Diamond, Cora      31—35 145 147
Dichotomy picture (DP)      150—158
Differentials      11
Dilemmas      170—171
Disjunction      19
Dummett, Michael      30—31 70—71 101n 158n
EI (existential instantiation) law      110—115
Einstein, Albert      21
Embedded expansions      39—40
Empty expansions      70—71
Equabons, expansion of      100
Equality      100 105
Equivalent forms, principle of the permanence of      3 17—20 108
Euler, Leonhard      14 90—91 130n
Excluded middle, law of      20—21 58 173
Existenbal instanbabon (EI) law      110—115
Existence of concepts      116—118 123—126
Existence of expansions      86—87 116—126
Expansions, theory of      40—49
Extensionalism      35—37 80
Extensions of concepts      36 72—76 89—90
External expansions      97—100
Factorial function      52 75 130
Family resemblance      83—85
Ficbons      11 16 20 134 137 148
Fields, extension of      98—99
Fine, K.      111 114n
Finite cardinality      49—50
Forced expansions      15 22
Forced expansions and deducbon      54—57
Forced expansions as rational procedures      58—59
Forced expansions as scientific tools      61
Forced expansions, absolutely forced expansions      56—57
Forced expansions, characterisbcs of      54—59
Forced expansions, existence of      116—126
Forced expansions, generality of      57—58
Forced expansions, logic of      57
Forced expansions, rejecters of      59—63
Forced expansions, strongly forced expansions      44—45 see
Forced meaninglessness      46
Formalism      92—96 100—103 104
Foundations of Arithmetic (Frege)      102
Framework for expansions      40—49
Frege, Gottlob      1—2
Frege, Gottlob and formalism      100—103
Frege, Gottlob and Lakatos      92—96
Frege, Gottlob and realism      24—29 74
Frege, Gottlob, determinacy of concepts      30—35
Frege, Gottlob, extensionalism      35—37
Frege, Gottlob, growth of concepts      38—40
Frege, Gottlob, logic, laws of      148
Frege, Gottlob, mathematical proofs      19
Frege, Gottlob, names, expansion of      70—71
Frege, Gottlob, Peano, critique of      81—83 100
Frege, Gottlob, questions and answers      81—83 136
Frege, Gottlob, replacement of concepts      38—39
Frege, Gottlob, Russell's paradox      158—162 162—168
Frege, Gottlob, sense of a sentence      136 140
Frege, Gottlob, thoughts      136 137 138—143
Frege, Gottlob, truth, stretching of      134—148
Frege, Gottlob, Wittgenstein on      144 147
Fruitful expansions      63—71 128
Fruitful expansions, applications of      22 65—66
Fruitful expansions, criteria for      64 70
Fruitful expansions, empty expansions      70—71
Fruitful expansions, examples of      65—71
Fruitful expansions, interpretation of      68—69
Fruitful expansions, representational power      66—68
Functions, analytic functions      31 51—52 57 130
Functions, definitions of      43 81—82
Functions, expansion of      12—15 129—130
Functions, framework for expansions      40—49
Functions, recursive functions      129
Fuzzy logic      32—35
Games and language      83—84
Gauss, Johann      75 77—78
Generality of forced expansions      57—58
Gibson, J.J.      120n
Godel, Kurt      20 50 124
Godel, Kurt on theory of types      152—153
Godel, Kurt, arguments compared      123—126
Godel, Kurt, existence of concepts      116—118 126—133
Godel, Kurt, intuition      122—123
Godel, Kurt, paradoxes      58 154
Godel, Kurt, Parsons on      123—125
Godel, Kurt, perception      119—123 123—126
Grasping concepts      25 28—29 74—76 86
Grasping thoughts      134—138
Greek model of mathematics      9 78
Gregory, Duncan      18
groups      18
Growth of concepts      38—40
Gupta, H.      111
Hamilton, William      18 108
Hankel, Hermann      19 101
Hilbert, David      19 20 21 58 88n
Hinbkka, Jaakko      121
Hypotheses and expansions      69—70
Idealism      62
Identity criteria of extensions      36
Identity of objects      102 105
Identity relation      98—100
Illusions in logic      159—162
Illusions in paradoxes      153—156 161
Illusions in perception      120
Illusions in set theory      156—158
Imaginary names      111—114
imaginary numbers      11 see
Imaginary sentences      111—115
Inchoate expressions      165—168
Inchoate expressions, DP      153; 157
Inchoate expressions, set of all sets      156—158
Inchoate thoughts      139—143 '73~4
Inclination to accept      145—146
Indefiniteness      46
Infinite cardinality      49—50
Infinite sets      2 65 125 166
infinity      119—120
Integers      63—64
intelligence tests      58—59
Intensionalism      72—73 89 148
Internal expansions      41 97—100
Internal expansions, forced      42—43
Internal expansions, strongly forced      44—45
Interpretation of expansions      68—69
Intuitionism      21 117—118 121—123
Judgement of truth-value      134—138
Kant, Immanuel      16 62 121—122
Kant, Immanuel, antinomies      ix 21 149 151—156 166
Klein, Felix      3
Kripke, Saul      58 75—76
Kronecker, Leopold      109 118
Kuhn's theory      76—77
Lakatos, Imre      90—96
Language and community      28—29
Language and games      83—84
Language and mathematics      22—23
Language and thought      160—162
Language, changes in      22—23 90—91
Language, inter subjectivity of      27
Language, logic of      82—83
Language, nature of      16
Language, philosophy of      22 90 91
Laws that force expansions      52
Laws, expansions of      58—59 168
Laws, preservation in expansions      2 17—19 103—109 127—128
Lebesgue, Henri      57 65 127—128
Leibniz, Gottfried, n      13—14 66n 106
Liouville, Joseph      65
Logarithm function      13—14 130n 157
Logic      19 20—21
Logic of expansion      40—53 58 59
Logic, consistency of      158—162
Logic, illusions in      159—162
Logic, inchoate expressions      165—168
Logic, partially defined predicates      30—35 147—148
Logic, philosophy of      58 169
Lorenz transformations      79
Maddy Penelope      12
Maimon, Solomon      15—16 155
Manders, K.      22
Mass, change in concept of      78—80
Mathematical objects      20 97—115 102—106 129 132
Mathematics and language      22—23
Mathematics, analytical continuation      31
Mathematics, debates in      9—15
Mathematics, fiction      11 16 20
Mathematics, Kuhn's theory      76—77
Mathematics, logic of      147
Meaningful sentences      142—143 150—158 see
Meaninglessness metaphysics      16 27
Model theory      98—100 108
Modern mathematics      2 57
Modern mathematics and physics      22 76
Modern mathematics, revolutions in      21 76—80 see
Momentum      78—80
Monads      12
Multiplication, laws of      19
Names      82 160
Names and sentences      70—71
Names, imaginary      111—114
Names, new      110—115
Names, unique references for      162—164
Natural numbers      109
Nature      62 148
negative numbers      10 106—109
Newtonian concept of mass      78—80
Normativity of expansions      62—63 62—63
Notation      19 81—82
NUMBER      50
Number, expanding the system      101—103
Number, fruitful expansions, rule for      66
Number, uniqueness of expansion      120 127
Number, very large numbers      88—89
Number, Wittgenstein on      83 171
Objectivity of concepts      25—28
Objects      see mathematical objects
Occam's razor      86
Ordinals      120
Ordinals as expansion of predicate calculus      109—115
Paradigm shifts      12 76—80
Paradoxes      14 58
Paradoxes, axioms and      165—166
Paradoxes, dichotomy picture (DP)      149—158
Paradoxes, illusions in      153—156
Paradoxes, set theory      21 168
Parsons, Charles      123—125
Pascal, Blaise      10 107
Peacock, George      3 17—20 52
Peano, Giuseppe      19 81—83 100
Perception of propositions      124
Perception ofconcepts      119—123 123—126 131—132
Philosophy      20—23
Philosophy of language      22 90 91
Philosophy of logic      58 169
Philosophy of mathematics      12 119 133
Physics      1 22 76
Polyhedra, theory of      90—91 95
Positional system of numbers      67
Positivist principle      151
Power function      2 51 73 88—89 98
Predicate calculus      40—51 111—115
predicates      82
Predicates, partially defined      30—35 147—148
Principle of the permanence of equivalent forms      3 17—20 52
Procedure of expansions      3 12—15 19—20
Products of expansions      3 9—15 97—115
Proofs      19—20 22—23 65—68 173
Proofs and Refutations: The Logic of Mathematical Discovery (Lakatos)      90
Proofs of propositions, sense and      143—148
Proofs, Lakatos      90—96
Proper names      see names
Propositions      123—124
Putnam, Hilary      21—22 75—76
Quadratic equations      10
Quaternions      18 108
Questions and answers, sense of      136—138
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå