Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Buzaglo M. — Logic of Concept Expansion
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Logic of Concept Expansion
Àâòîð: Buzaglo M.
Àííîòàöèÿ: Scientists and mathematicians frequently describe the development of their field as a process that includes expansion of concepts. Logicians traditionally deny the possibility of conceptual expansion and the coherence of this description. Meir Buzaglo's innovative study proposes a way of expanding logic to include the stretching of concepts, while modifying the principles which apparently block this possibility. He offers stimulating discussions of the idea of conceptual expansion as a normative process, and of the relation of the conceptual expansion to truth, meaning, reference, ontology, and paradox, and analyzes the views of Kant, Wittgenstein, Godel, and others, paying especially close attention to Frege. His book will be of interest to a wide range of readers, from philosophers (of logic, mathematics, language, and science) to logicians, mathematicians, linguists, and cognitive scientists.
ßçûê:
Ðóáðèêà: Ôèëîñîôèÿ, ðåëèãèÿ è êóëüòóðà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2002
Êîëè÷åñòâî ñòðàíèö: 194
Äîáàâëåíà â êàòàëîã: 23.05.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"essence" of a concept 83—85
"Following a rule" 144
"Inertia, Law of" 25
"Unsaturated" concepts 83
"What is Cantor's Continuum Problem?” (Goedel) 127
Absolutely forced expansions 56—57
Addition, laws of 19
Algebra 9 15—18 67 69
Algebra of negative numbers 106—109
Algebra, extension of fields 98—99
Alster, Gall 62n
Ambiguous sentences 142
Analogies 146—147 171
Analytic functions 31 51—52 57 130
Antinomies ix 21 149 151—156 158n 166
Applications of expansions 22 65—66
Aristotle 27 78
Arithmetic 2 3 15 16—18 88—89
Arnauld, Antoine 10
Axioms from constraints to 103—109
Axioms of comprehension 167
Axioms of logic 152
Benacerraf, Paul 114
Berkeley, George 11
Bernoulli, Johann 13—14 60
Boole, George 19
Boolos, George 162n
Boundaries 87—90 150—153
Brouwer, Luitzen 20 173
Calculus, differential 11
Cantor, Georg 44 127 155
Cantor, Georg, concept of number 57 75
Cantor, Georg, infinite numbers 125
Cantor, Georg, transcendental numbers 65 77 78
Cantor, Georg, Wittgenstein on 146—147 148
Cardinality 44 49—50 65 125
Cauchy's integral formula 67—68
Chain of extension 73 75—76 78
Characteristics of concepts 74
Characteristics of forced expansions 54—59
Classifying expressions 163—168
Cognition 15
Cohen, Paul 50
Community and concepts 28—29
Commutative law 18 108
complex numbers 51 69 108 109
Complex numbers, acceptance of 10—12
Complex numbers, Cauchy's formula 67—68
Compositionality 32 34—35
Computability 121
Conjunction 19
Consistency after expansion 101 159 162—163
Constraints 103—109 143
Context of discovery 103
Cosine function 85
De Moivre's theorem 69
Decomposition 34—35 67
Dedekind, Richard 19
Deduction 3 23 54—57 59 60—63 95
Definitions and family resemblance 83—85
Demarcation problem 150—153
Denumerable sets 65—66
Determinacy of concepts 30—35
Diamond, Cora 31—35 145 147
Dichotomy picture (DP) 150—158
Differentials 11
Dilemmas 170—171
Disjunction 19
Dummett, Michael 30—31 70—71 101n 158n
EI (existential instantiation) law 110—115
Einstein, Albert 21
Embedded expansions 39—40
Empty expansions 70—71
Equabons, expansion of 100
Equality 100 105
Equivalent forms, principle of the permanence of 3 17—20 108
Euler, Leonhard 14 90—91 130n
Excluded middle, law of 20—21 58 173
Existenbal instanbabon (EI) law 110—115
Existence of concepts 116—118 123—126
Existence of expansions 86—87 116—126
Expansions, theory of 40—49
Extensionalism 35—37 80
Extensions of concepts 36 72—76 89—90
External expansions 97—100
Factorial function 52 75 130
Family resemblance 83—85
Ficbons 11 16 20 134 137 148
Fields, extension of 98—99
Fine, K. 111 114n
Finite cardinality 49—50
Forced expansions 15 22
Forced expansions and deducbon 54—57
Forced expansions as rational procedures 58—59
Forced expansions as scientific tools 61
Forced expansions, absolutely forced expansions 56—57
Forced expansions, characterisbcs of 54—59
Forced expansions, existence of 116—126
Forced expansions, generality of 57—58
Forced expansions, logic of 57
Forced expansions, rejecters of 59—63
Forced expansions, strongly forced expansions 44—45 see
Forced meaninglessness 46
Formalism 92—96 100—103 104
Foundations of Arithmetic (Frege) 102
Framework for expansions 40—49
Frege, Gottlob 1—2
Frege, Gottlob and formalism 100—103
Frege, Gottlob and Lakatos 92—96
Frege, Gottlob and realism 24—29 74
Frege, Gottlob, determinacy of concepts 30—35
Frege, Gottlob, extensionalism 35—37
Frege, Gottlob, growth of concepts 38—40
Frege, Gottlob, logic, laws of 148
Frege, Gottlob, mathematical proofs 19
Frege, Gottlob, names, expansion of 70—71
Frege, Gottlob, Peano, critique of 81—83 100
Frege, Gottlob, questions and answers 81—83 136
Frege, Gottlob, replacement of concepts 38—39
Frege, Gottlob, Russell's paradox 158—162 162—168
Frege, Gottlob, sense of a sentence 136 140
Frege, Gottlob, thoughts 136 137 138—143
Frege, Gottlob, truth, stretching of 134—148
Frege, Gottlob, Wittgenstein on 144 147
Fruitful expansions 63—71 128
Fruitful expansions, applications of 22 65—66
Fruitful expansions, criteria for 64 70
Fruitful expansions, empty expansions 70—71
Fruitful expansions, examples of 65—71
Fruitful expansions, interpretation of 68—69
Fruitful expansions, representational power 66—68
Functions, analytic functions 31 51—52 57 130
Functions, definitions of 43 81—82
Functions, expansion of 12—15 129—130
Functions, framework for expansions 40—49
Functions, recursive functions 129
Fuzzy logic 32—35
Games and language 83—84
Gauss, Johann 75 77—78
Generality of forced expansions 57—58
Gibson, J.J. 120n
Godel, Kurt 20 50 124
Godel, Kurt on theory of types 152—153
Godel, Kurt, arguments compared 123—126
Godel, Kurt, existence of concepts 116—118 126—133
Godel, Kurt, intuition 122—123
Godel, Kurt, paradoxes 58 154
Godel, Kurt, Parsons on 123—125
Godel, Kurt, perception 119—123 123—126
Grasping concepts 25 28—29 74—76 86
Grasping thoughts 134—138
Greek model of mathematics 9 78
Gregory, Duncan 18
groups 18
Growth of concepts 38—40
Gupta, H. 111
Hamilton, William 18 108
Hankel, Hermann 19 101
Hilbert, David 19 20 21 58 88n
Hinbkka, Jaakko 121
Hypotheses and expansions 69—70
Idealism 62
Identity criteria of extensions 36
Identity of objects 102 105
Identity relation 98—100
Illusions in logic 159—162
Illusions in paradoxes 153—156 161
Illusions in perception 120
Illusions in set theory 156—158
Imaginary names 111—114
imaginary numbers 11 see
Imaginary sentences 111—115
Inchoate expressions 165—168
Inchoate expressions, DP 153; 157
Inchoate expressions, set of all sets 156—158
Inchoate thoughts 139—143 '73~4
Inclination to accept 145—146
Indefiniteness 46
Infinite cardinality 49—50
Infinite sets 2 65 125 166
infinity 119—120
Integers 63—64
intelligence tests 58—59
Intensionalism 72—73 89 148
Internal expansions 41 97—100
Internal expansions, forced 42—43
Internal expansions, strongly forced 44—45
Interpretation of expansions 68—69
Intuitionism 21 117—118 121—123
Judgement of truth-value 134—138
Kant, Immanuel 16 62 121—122
Kant, Immanuel, antinomies ix 21 149 151—156 166
Klein, Felix 3
Kripke, Saul 58 75—76
Kronecker, Leopold 109 118
Kuhn's theory 76—77
Lakatos, Imre 90—96
Language and community 28—29
Language and games 83—84
Language and mathematics 22—23
Language and thought 160—162
Language, changes in 22—23 90—91
Language, inter subjectivity of 27
Language, logic of 82—83
Language, nature of 16
Language, philosophy of 22 90 91
Laws that force expansions 52
Laws, expansions of 58—59 168
Laws, preservation in expansions 2 17—19 103—109 127—128
Lebesgue, Henri 57 65 127—128
Leibniz, Gottfried, n 13—14 66n 106
Liouville, Joseph 65
Logarithm function 13—14 130n 157
Logic 19 20—21
Logic of expansion 40—53 58 59
Logic, consistency of 158—162
Logic, illusions in 159—162
Logic, inchoate expressions 165—168
Logic, partially defined predicates 30—35 147—148
Logic, philosophy of 58 169
Lorenz transformations 79
Maddy Penelope 12
Maimon, Solomon 15—16 155
Manders, K. 22
Mass, change in concept of 78—80
Mathematical objects 20 97—115 102—106 129 132
Mathematics and language 22—23
Mathematics, analytical continuation 31
Mathematics, debates in 9—15
Mathematics, fiction 11 16 20
Mathematics, Kuhn's theory 76—77
Mathematics, logic of 147
Meaningful sentences 142—143 150—158 see
Meaninglessness metaphysics 16 27
Model theory 98—100 108
Modern mathematics 2 57
Modern mathematics and physics 22 76
Modern mathematics, revolutions in 21 76—80 see
Momentum 78—80
Monads 12
Multiplication, laws of 19
Names 82 160
Names and sentences 70—71
Names, imaginary 111—114
Names, new 110—115
Names, unique references for 162—164
Natural numbers 109
Nature 62 148
negative numbers 10 106—109
Newtonian concept of mass 78—80
Normativity of expansions 62—63 62—63
Notation 19 81—82
NUMBER 50
Number, expanding the system 101—103
Number, fruitful expansions, rule for 66
Number, uniqueness of expansion 120 127
Number, very large numbers 88—89
Number, Wittgenstein on 83 171
Objectivity of concepts 25—28
Objects see mathematical objects
Occam's razor 86
Ordinals 120
Ordinals as expansion of predicate calculus 109—115
Paradigm shifts 12 76—80
Paradoxes 14 58
Paradoxes, axioms and 165—166
Paradoxes, dichotomy picture (DP) 149—158
Paradoxes, illusions in 153—156
Paradoxes, set theory 21 168
Parsons, Charles 123—125
Pascal, Blaise 10 107
Peacock, George 3 17—20 52
Peano, Giuseppe 19 81—83 100
Perception of propositions 124
Perception ofconcepts 119—123 123—126 131—132
Philosophy 20—23
Philosophy of language 22 90 91
Philosophy of logic 58 169
Philosophy of mathematics 12 119 133
Physics 1 22 76
Polyhedra, theory of 90—91 95
Positional system of numbers 67
Positivist principle 151
Power function 2 51 73 88—89 98
Predicate calculus 40—51 111—115
predicates 82
Predicates, partially defined 30—35 147—148
Principle of the permanence of equivalent forms 3 17—20 52
Procedure of expansions 3 12—15 19—20
Products of expansions 3 9—15 97—115
Proofs 19—20 22—23 65—68 173
Proofs and Refutations: The Logic of Mathematical Discovery (Lakatos) 90
Proofs of propositions, sense and 143—148
Proofs, Lakatos 90—96
Proper names see names
Propositions 123—124
Putnam, Hilary 21—22 75—76
Quadratic equations 10
Quaternions 18 108
Questions and answers, sense of 136—138
Ðåêëàìà