Авторизация
Поиск по указателям
Ferrera J. (Ed), Lopez-Gomez J. (Ed) — Ten Mathematical Essays on Approximation in Analysis and Topology
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Ten Mathematical Essays on Approximation in Analysis and Topology
Авторы: Ferrera J. (Ed), Lopez-Gomez J. (Ed)
Аннотация: This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces of mathematical intra-history should delight to many forthcoming generations of mathematicians, who will enjoy some of the most fruitful mathematics of the last third of 20th century presented by their own authors.
This book covers a wide range of new mathematical results. Among them, the most advanced characterisations of very weak versions of the classical maximum principle, the very last results on global bifurcation theory, algebraic multiplicities, general dependencies of solutions of boundary value problems with respect to variations of the underlying domains, the deepest available results in rapid monotone schemes applied to the resolution of non-linear boundary value problems, the intra-history of the the genesis of the first general global continuation results in the context of periodic solutions of nonlinear periodic systems, as well as the genesis of the coincidence degree, some novel applications of the topological degree for ascertaining the stability of the periodic solutions of some classical families of periodic second order equations,
the resolution of a number ofconjectures related to some very celebrated approximation problems in topology and inverse problems, as well as a number of applications to engineering, an extremely sharp discussion of the problem of approximating topological spaces by polyhedra using various techniques based on inverse systems, as well as homotopy expansions, and the Bishop-Phelps theorem.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2005
Количество страниц: 270
Добавлена в каталог: 23.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Laloux, H. 164 175
Lancaster, P. 174
Laplace, PS. 2 5 78 100 101 107 109 111 114 121 122 232 248 252
Laurent, P.A. 167 175
Lawruk, B. 176
Lax, P.D. 133
Lebesgue number 64
Lebesgue, H. 64 65 67 79 80 111 118 137 143
Ledoux, P. 207
Leela, S.G. 129 149
Lefschetz, S. 180 196 200 213
Lei, J. 233 234
Leray — Schmider formula 158
Leray, J. 152 157 159 174 175 199 204—213
Levi, M. 220 233
Levi-Civita, T. 216 234
Levin, M. 185 196
Levinson, N. 129
Li, X. 234
Lie, S. 98
Lienard, A. 206 207
Light map 89
Lindeloeff, E. 182
Lindenstrauss, J. 239 243
Lions, J.L. 57 116 120
Liouville, J. 218 219
Lipschitz, R. 3 67 68 74 77 78 81 82 92 93 126 143 200 202 206—209 211 240 255
Liu, B. 234
Lloyd, N.G. 159 175 234
Lobo-Hidalgo, M. 109 118 122
Locally finite cover 64
Lokucievskii, O.V. 196
Lomonosov, V. 238 243
Lopez-Gomez, J. 17 20 27 56 108 122 151 160 161 166—168 170 174 175
Lotka, A.J. 59
Lotz, H.P. 57
Lubotzky, A. 77 93
Luna, G. 239 243
Lune, A.L. 1
Lyapunov, A.M. 130 201 202 205 216 217 233
MacLane, S. 83 182
Magnus, R.J. 164 168 169 175
Magnus, W. 219 234
Mancebo, F.J. 58
Mapping approximation problem 82
Mapping of systems 179
Mardesic, S. 177 184—186 188—100 106 197
Markus, A.S. 175
Martinez, A. 109 120 121
Matijevic, V. 191 197
Matousek, J. 94
Mawhin, J. 159 164 175 199 204 207 213 214
Maximum principle 11
Maximum principle characterization 4 16
Maximum principle for irregular domains 103
Maximum principle, characterization of the refined 104
Maximum principle, refined 104
Maximum principle, strong 15
Maximum principle, very weak 3 4 11
Maximum principle, weak 11 37
Mazur, S. 240
Mean curvature 101
Merino, S. 58
Metrically proper map 63
Meyer, K. 234
Micheletti, A.M. 96 101 107 122
Milgram, A.M. 133
Minorsky, N. 200 214
Mitchell, R. 149
Mitchener, P. 94
Mitidieri, E. 57—59
Molina-Meyer, M. 59
Monniaux, S. 57
Mora-Corral, C. 166 168 170 175 176
Morita, Y. 109 121
Mortal, K. 188 193 194 197
Moscovici, H. 92
Moser, J. 216 233 234
Moustakas, U. 57
Nagami, K. 182 183 197
Nagel, R. 57
Nayroles, B. 122
Necas, J. 59
Negligibility criterion 87
Negligible compactum 86
Nemee, A.G. 197
Neubrander, F. 57
Neumann, K.G. 2 8 18 19 96 101 102 108 109 114 118 120 121
Newton, I. ix xii 140 234
Nikodym, O.M. 238 239 243
Nirenberg, L. 27 57 103 104 120
Nonlinear eigenvalue characterization theorem 159 163
Nonlinear eigenvalue concept 155
Nonresonant case 200
Novikov, P.S. 61 74 79 80 92
Nunez, D. 232 234
Nussbaum, R.D. 159
Order of an algebraic eigenvalue 162
Order of transversality 161
Ordered Banach space 9
Ortega, R. 215 228 233 234
Osgood, W. 129
Ozawa, S. 109 122
P-like space 183
Pao, C.V. 59 149
Papanicolaou, C. 116 120
Parametric resonance 215
Pardo, R. 59
Parity map 169
Pasynkov, R.A. 185 195 197 198
Peck, N.T. 242 243
Peetre, J. 98 122
Pejsachowicz, J. 159 160 174
Peletier, L.A. 17 57
Pendulum equation 215
Pereira, A.L. 102 122
Perov, A.I. 233
Perpetual stability 217
Perron, O. 58
Perturbation from simple eigenvalues 49 100
Perturbation of a periodic solution 200
Perturbation of domains 21
Perturbation of eigenspaces 101
Perturbation of positive resolvents 30
Perturbation of spectral projections 101 107
Perturbation of the resolvent 107
Perturbation, irregular, of domains 96 10
Perturbation, regular, of domains 96
Petryshyn, W.V. 159
Phelps, R.R. 235 244
Phillips, D.L. 246 261
Poincare map 205 218 219
Poincare, R. ix xi xii 58 160 205 218 219 225 231
Polyhedron 178
Pontryagin, I. 74 180 198
Positive cone 9
Positive eigenfunction 5 15
Positive injections 35
Positive inverse 11 28
Positive matrix 7 31
Positive resolvent 28 30 31 35
Positive semigroup 28
Positive strongly 15
Povolotskiy, A.L. 233
Principal eigenfunction 15
Principal eigenvalue 13 15 104
Principal eigenvalue concavity 26
Principal eigenvalue continouity properties 20 105
Principal eigenvalue limiting properties 111
Principal eigenvalue minimax characterization 24
Principal eigenvalue monotonicity 17
Prizzi, M. 115 116 122
Projection to the nerve 66
Proper metric space 63
Property, 69
Property, C 247
Protter, M.H. 16 17 59
Pruess, J. 58
Quasi-interior point 28
Quittner, P. 56
Rabier, P.J. 164 166 167 176
Rabinowitz, P.H. 162 164 169 170 174 176
Radon — Nikodym property 239
Radon, J. 238 239 243 260 262
Rainwater, J. 240 244
Ramm, A.G. 168 176 245—248 261 262
Ranicki, A. 93
Rauch, J. 109 122
Raugel, G. 108 109 114 121 122
Rayleigh, J.W.S. 100 122
Regular pair 157
Reid, C. ix
Reissig, R. 207 208 214
Repovs, D. 93
Resolution of a space 186
Resonant case 200
Riemann, G.F.B. 44—46 60 81 93 94 210
Riesz, F. 210 211
Robbin, J. 101 120
Robin, L. 2 8 19 20 24 57 100 101 108 121 122
Roc, J. 65 75 93 94
Rockafellar, R.T. 241 243
Rodman, L. 174
Ronati, C. 228 233
Roppongi, S. 109 122
Rosenberg, J. 93
Rothe, E.H. 234
Rouche, E. 174
Rouche, X. 214
Row, J. 93
Rowley, B. 176
Rubin, L.R 185 188—190 196—198
Runge, C. 245
Rutman, M.A. 15 40 43
Rybakowski, R.P. 115 116 122
Sabina de Lis, J. 59
Sanchez-Palencia, E. 109 118 122
Sansone, G. 200 214
Sard, A. 157 173 176
Sarreither, P. 164 176
Sattinger, D. 59
Saul, J.C. 102 122
Scattering solution 254
Schaeffer, D.G. 174
Schapiro, P.J. 196 198
Schauder, J. 152 157 159 174—176 199 200 204
Schepin, E.V. 93
Schiffer, M. 100 121
Schlotterbeck, F. 57
Schmidt, E. 201 202 205 210 214
Schmitt, K. 57 59
Schroedinger, E. 57 118 120 253 254
Schrohe, E. 58
Schwarz, H.A. 211
Seco, L.A. 109 121
Sedziwy, S. 207 214
Segal J. 197
Sell, G. 234
Serrin, J. 99 122
Set of non-trivial solutions 154
Shaefer, H.H. 59
Shape functor 191
Shape theory 173 191
Shapiro, P.J. 185
Shchepin, E.V. 94
Shivakumar, P.N. 261
Siegel, C. 234
Sierpiniski, W. 1 &4
Sigal, E.L. 164 168 174—176
Simon, B. 109 121
Simple compactum 87
Simple complex 85
Simple eigenvalue 5
simplex 178
Skandalis, C. 94
Skordev, G. 198
Smale, S. 157 173 176
Smienova, A.B. 262
Smirnov, Ju.M. 195 198
Smith form concept 167
Smith form, characterization of the existence 167
Smith, H.J.S. 164 166 167 175 176
Smoller, J. 59
Sobolev, S.L. 10 38 44 55 255
Solution, strong 12 331
Solution, T-periodic 399 224
Solution, very weak 13 33
Solution, weak 13 33 133
Spagnolo, S. 116 121
Special basis 87
Spectral bound 9
Spectral extrapolation 248 257
Spectrum of 154
Spherical anti-Cech V-approximation 67
Spherical metric 67
Spherical V-approximation 67
Spiez, S. 94
Sprekels, J. 120
Stability of a measure 233
Stable approximation 246
Stampacchia, G. 59 60
Stanko, M.A. 91 94
Steenrod, N.K. 65 196
Stewart, I. xii
Stollmann, P. 60
Stone, A.H. 72 198
Stoppelli, R. 207 214
Strauss, A.V. 261
Strong expansion 194
Strongly positive eigenfunction 15
Strongly positive function 15
Stummel 109 122
Sturm, H.Th. 60
Subsolution, weak 55 133
Successive approximations 126
Supersolution, strict 5 16
Supersolution, very weak 5
Supersolution, weak 55 133
Sweers, G. 57 59 60
Symplectic group 219
Takac, P. 60
Taylor, B. 96 224 251
Taylor, M. 109 122
Temam, R. 102 122
Tikhonov, A.N. 246 262
Topological complexity 173
Topological degree additivity property 156
Topological degree calculation 158 223
Topological degree concept 156 204 222
Topological degree construction 159 205
Topological degree excision property 156 222
Topological degree existence property 157 222
Topological degree homotopy invariance 157 204 222
Topological degree Leray — Schauder formula 158 223
Topological degree normalization property 156
Topological degree of a regular pair 158
Topological degree of an holomorphic function 157
Topological degree stability under small perturbations 204
Topological degree uniqueness theorem 156
Topological index 158 222
Реклама