Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Cai X., Wong C.K., Sha D. — Time-Varying Network Optimization
Cai X., Wong C.K., Sha D. — Time-Varying Network Optimization



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Time-Varying Network Optimization

Авторы: Cai X., Wong C.K., Sha D.

Аннотация:

Network flow optimization analyzes optimization problems on networks; hence, network optimization is reflected in many application fields including transportation, telecommunication, computer networking, financial planning, logistics and supply chain management, energy systems, etc. To date, most network optimization problems that have been studied are static network optimization problems. "Real world networks" are time-varying in essence, and therefore any flow within a network must take a certain amount of time to traverse an arc. Moreover, the parameters of "real world networks" may change over time. Problems such as how to plan and control the transmission of flow become very important, because waiting at a node, or traveling along a particular arc with different speed, may allow one to catch the best timing along the path; thus, achieving the objective and changing the decision making process. It should be noted that there are a host of decision making problems in practice that should be formulated as optimization models on time-varying networks.

The express purpose of Time-Varying Network Optimization is to describe, in a unified and self-contained manner, a series of models, propositions, and algorithms developed in recent years on time-varying networks. References and discussions on relevant problems and studies that have appeared in the literature are integrated in the book. The book consists of eight chapters, in which the following problems are formulated and examined: (1) the shortest path problem, (2) minimum-spanning tree problem, (3) maximum flow problem, (4) minimum cost flow problem, (5) maximum capacity path problem, (6) quickest path problem, (7) multi-criteriaproblem, and (8) the generalized flow problem. The time-varying traveling salesman problem and the Chinese postman problem are presented in a chapter together with the time-varying generalized problem. While these topics will be described all within the framework of time-varying networks, our plan is to make each chapter relatively self-contained so that each can be read separately. The book will be useful for researchers, practitioners, graduate students and senior undergraduates as a unified reference and textbook on time-varying network optimization. While the book describes the structure of the algorithms, the authors also have developed the software that implements the algorithms. This software can be made available for academic study purposes upon request.


Язык: en

Рубрика: Computer science/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 223

Добавлена в каталог: 07.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
3-dimensional matching (3DM) problem      73
Alternating number      114 183
Approximate solution      52 145
Arbitrary waiting time      9 96 120 144 188 194 199
Arc capacity      71 178
Arc series-parallel network (ASP network)      31
Arrival time      4
Artificial arc      34 178
Artificial edge      48
Artificial path      35
Artificial vertex      3 34
Backward searching      113 182
Binary heap      17 141
Bounded waiting time      15 97 124 138 190 197 205
Capacity      71
Cheapest path      108
Class of APX      54
Conjunction vertex      44
Consistent maximum dynamic f-augmenting path      181
Contracting operation      34
Converging vertex      33
Cost of a path      4
Dangling path      44
Dangling vertex      44
Departure time      4
diamond      33
Directed Hamilton Path      198
Dynamic Chinese tour      197
Dynamic cycle      111
Dynamic f-augmenting path      75 109 177
Dynamic path      4
Dynamic residual network      77 109 182
Dynamic spanning tree      29
Efficient point      171
Efficient solution      169
Extra arc capacity      131
f-approximate solution      60
Feasibility of an f-augmenting path      87
Flow-absorbing cycle      180
Flow-absorbing path      180
Flow-generating cycle      180
Flow-generating path      180
Flow-in vertex      45
Flow-out vertex      45
Forward searching      113 182
Generalized cut      79
Generalized flow      175
Generalized network      176
Heuristic algorithm      57
Knapsack problem      7 32 136 154
Label setting algorithm      88
Leading time      151
Maximum dynamic f-augmenting path      177
maxk      163
Merge operation      170
Minimum cost-reliability ratio path problem      167
Minimum set cover problem (MSC)      52
Mink      163
MinSun-Minmax problem      170 173
MinSun-MinSun problem      169
Multi-criteria path      167
Multi-period network      62
Multiplier      176
Negative cycle      111
Network containing no subgraphs homomorphic to K4      42
Network updating procedure      76 109 178
Normal arc      132
NP-complete problem      7
Numerical experiment      65
Operator eff      171
Optimal f-augmenting path      117
Optimal time/cost trade-off      21
Path has time at most t      4
Path has time exactly t      4
Path-induced subnetwork      28
Polynomially solvable      7
Reducible      7 42
Reducible network      42
Redundant arc      58
Root      28
Shared intermediate vertex      58
Source arc      199
Source vertex      3
Spanning reducible network      64
Speedup cost      21
Spreading vertex      33
Static k-quickest path problem      159
Successive improvement algorithm      113
Time of a dynamic path      4
Time windows      2
Time-expanded network      193
Time-varying Bicriteria path (TVBP) problem      169
Time-varying Chinese postman problem      197
Time-varying generalized residual network      178
Time-varying maximum (k, c)-flow problem      131
Time-varying maximum capacity path (TVMCP) problem      135 155
Time-varying maximum generalized flow (TVMGF) problem      176
Time-varying Min-cut Max-flow Theorem      80
Time-varying minimum cost flow (TVMCF) problem      108
Time-varying minimum spanning tree (TMST) problem      29
Time-varying quickest path (TVQP) problem      152
Time-varying shortest path (TVSP) problem      2 110
Time-varying traveling salesman (TVTS) problem      192
Time-varying universal maximum flow (TVUMF) problem      71 177
Transit cost      3
Transit time      2
Underlying graph      55 136
Unlimited flow-generating cycle      181
Waiting cost      3
Waiting time      4
Zero transit time      19
Zero waiting time      14 88 113 143 173 182 196 203
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте