Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Knapp A.W. — Elliptic Curves (MN-40)
Knapp A.W. — Elliptic Curves (MN-40)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Elliptic Curves (MN-40)

Автор: Knapp A.W.

Аннотация:

An elliptic curve is a particular kind of cubic equation in two variables whose projective solutions form a group. Modular forms are analytic functions in the upper half plane with certain transformation laws and growth properties. The two subjects — elliptic curves and modular forms — come together in Eichler-Shimura theory, which constructs elliptic curves out of modular forms of a special kind. The converse, that all rational elliptic curves arise this way, is called the Taniyama-Weil Conjecture and is known to imply Fermat's Last Theorem.

Elliptic curves and the modeular forms in the Eichler- Shimura theory both have associated L functions, and it is a consequence of the theory that the two kinds of L functions match. The theory covered by Anthony Knapp in this book is, therefore, a window into a broad expanse of mathematics — including class field theory, arithmetic algebraic geometry, and group representations — in which the concidence of L functions relates analysis and algebra in the most fundamental ways.

Developing, with many examples, the elementary theory of elliptic curves, the book goes on to the subject of modular forms and the first connections with elliptic curves. The last two chapters concern Eichler-Shimura theory, which establishes a much deeper relationship between the two subjects. No other book in print treats the basic theory of elliptic curves with only undergraduate mathematics, and no other explains Eichler-Shimura theory in such an accessible manner.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 448

Добавлена в каталог: 05.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Second degree Kuler product      199
Segre embedding      347
Selmer’s example      8
Separable      359
Serre      xii 18 392 399
Shimura      xii 302 374 389 390 390 404
Shimura — Taniyama      373
singular      12 25 27 58 77
Smooth curve      27
Split case      79
Square root      169
Strictly multiplicative      197
Strong Weil curve      392
Subvariety      368
Summation by parts      192
Swinnerton — Dyer      17 208 386
Tangent case      75
Tangent line      27
Taniyama      373
Taniyama — Weil conjecture      xii 18 208 221 390 399
Tate normal form      147
Torsion subgroup      15 130
Torsion subgroup, prescribed      145
Torus, complex      160 183 370
Total winding number      170
Trace      123 396
Translation      364
Twistst      306 393
Ultrametric inequality      134
Uniformizer      350
Unique factorization      92 127
UNIT      92 124
Unramified      359
Unrestricted modular form      224 261
Valuation      351
Vanishes at the cusp      263
Variety, abetian      367
Variety, affine      342
Variety, projective      345
Very bad prime      108
Wedderburn’s theorem      375
Weierstrass, double series theorem      158
Weierstrass, equation      362
Weierstrass, equation, minimal      290
Weierstrass, form      13 42 56 57 401
Weierstrass, function      153
Weight      63 224 261 333
Weil      xii 18 208 221 387 390 399
Weil Conjectures      403
Weil converse theorem      388
Weil curve      390
Weil curve, strong      392
width      263
Winding number, total      170
Zero      360
Zeta function      xi 189 194 295
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте