√лавна€    Ex Libris     ниги    ∆урналы    —татьи    —ерии     аталог    Wanted    «агрузка    ’удЋит    —правка    ѕоиск по индексам    ѕоиск    ‘орум   
blank
јвторизаци€

       
blank
ѕоиск по указател€м

blank
blank
blank
 расота
blank
Palade V. (Ed), Jain L.C. (Ed), Bocaniala C.D. (Ed) Ч Computational Intelligence in Fault Diagnosis
Palade V. (Ed), Jain L.C. (Ed), Bocaniala C.D. (Ed) Ч Computational Intelligence in Fault Diagnosis

„итать книгу
бесплатно

—качать книгу с нашего сайта нельз€

ќбсудите книгу на научном форуме



Ќашли опечатку?
¬ыделите ее мышкой и нажмите Ctrl+Enter


Ќазвание: Computational Intelligence in Fault Diagnosis

јвторы: Palade V. (Ed), Jain L.C. (Ed), Bocaniala C.D. (Ed)

јннотаци€:

Presenting the latest developments and research results on fault diagnosis approaches using computational intelligence methodologies, this book opens with a review of the state-of-the-art before focusing on various theoretical aspects of computational intelligence methodologies applied to real-world fault diagnosis problems.

Chapters deal with topics such as fuzzy sets applications to fault diagnosis, neural network based fault diagnosis applications and neuro-fuzzy techniques for fault diagnosis. The last chapter considers the problem of diagnosing large scale complex systems using local agents which, can be implemented using computational intelligence based fault diagnosis techniques. Several case studies are used.

This book presents the most recent concerns and research results in industrial fault diagnosis using intelligent techniques, and will be of interest to application engineers/technologists, graduates and researchers wishing to apply these techniques, as well as build up a foundation for further study.


язык: en

–убрика: ћедицина и здравоохранение/

—татус предметного указател€: √отов указатель с номерами страниц

ed2k: ed2k stats

√од издани€: 2006

 оличество страниц: 362

ƒобавлена в каталог: 11.12.2007

ќперации: ѕоложить на полку | —копировать ссылку дл€ форума | —копировать ID
blank
ѕредметный указатель
Abduction problems      232Ч234 236Ч240 242 248 271Ч273 279 282 283
Abrupt faults      85 87 96 98 99 117 221 226 306 323 326 327
actuators      6 84 94 95 105 186 251 256 260 317 318 319 335 336
Algorithm      4 14 22 32 39 42 43 54 76 90 115 128 205 338 341 343Ч355
Analytical models      4 30 82 103 185 189
applications      1 29Ч31 33Ч39 49 55 78 103Ч105 121 122 127 176 183 184 228 229 307 312 328
Architecture      11 12 14Ч16 22 39 86 87 195 197 205 214 289 305 308 314
Artificial Neural Networks      34 86 179 183 186 191 201 202 210 237 262 267 270 306 307 309Ч313 328Ч334
Behaviour      49 69 85 116 117 126 167 222 224 225 231 232 234 237 244 245 262 281 338
Bond-graph      255 259Ч261 268
Categories      21 66 109 111Ч113 119Ч121 126 139 181 187 196 210 234 241 242 288 320 321
Causal models      31 335Ч341 343 346 348 349 351 353Ч355
Classes      10 11 13 20 128 129 158Ч163 168 169 206 211 212 218Ч220 223Ч225 259 289Ч293 299 313
Classification      11 12 17 21 28 104 105 125 159Ч161 168 170 173Ч175 209Ч213 216 218Ч220 226 227 304 305
Classifier      16 17 86 105 107 108 111 113Ч116 118 119 121 209Ч213 216Ч218 220 223Ч225 228
Clustering, fuzzy      88Ч90 102 128
Clusters      16 52 54 89 90 113 119 146Ч148 150 152Ч155 160 162 168Ч170 173Ч175 313
complexity      1 23 30 31 74 89 91 104 171 197 198 243 246 276 287 310 311 336 337
components      14Ч16 19 29 45Ч47 51 57 58 60 63Ч65 70Ч74 106 179Ч182 187Ч189 195 196 241Ч244 251Ч268
Computational Intelligence      1 3 5 7 9Ч11 13 15 17 29Ч31 33Ч35 177 233 283 288 289 329
conditions      7 30 49 51 52 71 72 82 86 117 179 190 195 299 309 337 343Ч345
Conductive flow systems      231 232 235 243 245 251Ч253 260 282
Control      31 32 34Ч36 84 95 102 104 122 123 176 177 187 202 203 228 229 314 318 329Ч331 333 334
Control, fault-tolerant      3 4 355 356
Correlation      127 146 197
Correlation, Pearson      109Ч111 118
Cost function      89 160Ч162
Cost function, error      214 216 218 219 223 224 228
defects      125Ч130 137 139 141Ч147 149 150 156 162 163 165Ч172
Detection      4 11 31 78 82Ч84 99 100 108 117Ч119 125Ч127 176 187 194 203 209Ч211 217
Diagnosis      20 27Ч29 33Ч35 49 50 71 85 86 102 103 125Ч127 231Ч234 242Ч248 261Ч264 271Ч276 280Ч284 303Ч306 353Ч355
Diagnosis, global      1 30 31 335 336
Diagnosis, local      31 335
Diagnosis, model-based      3 32 33 284
Diagnosis, system      105 106 244Ч249 261 269 273 274 279 282 287
Diagnostic      50 103 188 193 201 205 231Ч235 237 240 262 263 269Ч274 280Ч283 303 311 334
Digraph      336Ч338 341Ч343 345 349Ч352
Distributed diagnosis      335 354Ч356
Dynamic systems      12 32 34 35 82 102 103 122 123 210 228 229 284 285 314 329 330 333 355
Dynamics      5 6 12Ч15 34 104 118 289 290 306
Edges      336 338 341Ч351 354
Effort      125 180 254Ч260 266 271 272 289 303
entropy      129 153 154 159Ч162 168 173Ч175
Error function      214 219
Errors      38 61 65 69 95 144 186 189 197Ч200 214 223Ч225 306 319
Estimation, parameter      2 8Ч10 33 83 88 90 176
experiments      31 165 232 233 237 262 267 269 271 278 279 282 296Ч302
Fault detection      2 4 6Ч8 10 21 32Ч34 81 83 87 101Ч105 209 216Ч218 223Ч226 228 330Ч332
Fault identification      4 20 126 209 216 224 226 228
Fault intensity      316 322Ч324
Fault isolation      4 7 14 17 21 23 26 85 98 209 218Ч220 222Ч224 242 269Ч271 322
Fault propagation      262
Fault settling time      322 323 326
Fault strengths      116 119Ч121 225 316
Fault symptoms      305 314 315 323 326
Faults      2Ч9 81Ч87 98 99 105Ч108 115Ч121 186Ч191 195Ч201 216Ч221 223Ч227 231Ч237 241Ч245 256Ч258 260Ч282 314Ч318 320Ч328
Feedback      5 13Ч14 310Ч311 321 337Ч343 346 348 354
Flow      37 51 64 74 95 96 98 100 115Ч117 180 182 197 198 251Ч262 266Ч268 318Ч322 327
Flow, conductive      231 231 235 243 245 251Ч253 260 282Ч282
Fuzzy logic      3 9 10 17 21 28 37Ч39 42 55 57 63 65 73 76 83 86 313
Fuzzy models      17 18 39 81Ч83 86Ч92 94Ч99 101 103 128 145 146 162 168 171 307
Fuzzy rules      17Ч19 21Ч22 26 27 39 43Ч48 50Ч54 55 86 88Ч89 92 93
Fuzzy sets      17Ч19 21Ч23 26 39Ч45 88 90 92 103 106 152Ч155 159 176 249 305 329Ч332
Fuzzy statistical method      169
Fuzzy systems      10 18Ч20 33 39 43 47 50 53Ч55 77 79 82 86 88 103 104 312 313
Gas-path fault      179 183 191 205
Genetic algorithms      1 3 9 10 21 27Ч29 32 34 36 87 91 93 102 103 115 122 183
Graph      336 348 350Ч352
Hierarchical structure      23 24 106 261 264 265 305 307 314 315 323 328
Human diagnostician      231Ч234 237 242Ч248 250 251 261Ч262 265Ч266 269 271 276 278 279 282 283
Hyperboxes      107Ч108 289Ч294 299Ч300
Hypergraph      337Ч338 348 350
Identification      15 37 44 50 63 88Ч90 263 311Ч313
Incipient faults      97 99 221 224 306 314 324Ч326
Inference process, fuzzy      19 39Ч40 50Ч54
Input-output model      6 8Ч10
Inputs      4Ч6 8Ч10 12Ч18 20Ч27 30Ч41 43Ч45 50Ч55 57Ч59 63 64 66 69 77Ч78 81Ч83 87Ч90 94 96 113 115Ч117 139 144 154 183Ч186 193Ч194 206Ч207 210Ч211 213Ч215 220Ч222 236Ч240 255 256 258Ч260 275Ч277 288Ч292 308Ч311 314Ч317 322 347Ч348
Intermittent faults      101
Intervals      17 24 28 65 117 246 247 262 294 296 298 300Ч301
Isolation      4 6Ч11 20Ч21 23 45 84Ч85 98 117Ч120 186Ч187 217Ч220 222Ч224 242Ч244 256Ч258 269Ч272 314Ч318 322Ч323 326Ч328
Knowledge      19 27 37 81Ч83 85Ч86 88 231Ч238 240 242 248 261Ч279 282Ч283 288Ч289 309Ч313
Layers      13 194 207 213Ч214 240Ч242 275 316
Learning      19 21 27 47 50Ч51 132 184Ч186 213Ч214 288Ч292 310Ч313
Learning algorithm      44 47 50Ч51 280 289Ч292 310
Linear models      5 17Ч18 86 307Ч308
Logic      39 44 236 238Ч239 243Ч247 282
Loops      5 254 339Ч344 346Ч348 354
Magnitude      37 68Ч69 114 131 138Ч139 190 198 323
Malfunctions      3Ч4 82 125 211 216 318
MAP      11Ч12 19 39 43 50 54 82 105 146 152 161Ч163 168 170Ч171 207 215 231Ч232 316 336Ч337 354
Measurements      29 48Ч49 50 52 53Ч54 64 66Ч71 108Ч109 116Ч117 190Ч192 198Ч199 216 219 220 222Ч223 248 297 315Ч316 322 335Ч336 338Ч341
Measurements selection      56Ч59 63
Membership functions      17 19Ч22 41 53 88 112Ч113 118 152Ч155 247 249Ч250 289Ч291 323Ч324
Model      4Ч6 8Ч15 17Ч19 21Ч22 24Ч25 39 49Ч56 75 84Ч101 128Ч129 145Ч146 168 184Ч185 191 211 213 215 232Ч233 237Ч238 254Ч256 261Ч264 288Ч289 307Ч313 317
Model, causal      335Ч331 343 346Ч351 353Ч355
Model, computational      238 243 261Ч264
Model, connectionist      232 242 250 270Ч271
Model, mathematical      4 9 39 84 184 306Ч307 310
Model, statistical      139
Network, flow functions      251 253 254 257 266
Network, neural      10Ч16 47Ч48 183Ч189 193Ч200 206Ч207 210Ч215 219 220 223 224 233Ч234 236Ч240 242 262 270Ч273 275 279 280 305Ч314
Network, neuro-fuzzy      20Ч29 289Ч294 297Ч300 314Ч313
Network, statistical      145Ч146 173Ч175
nodes      212 254 260 291 352
Noise      4 8 10 29Ч30 48Ч49 55 57Ч58 64 66Ч69 83 85 117 127 131Ч132 137 191 193 196Ч199 222 223 277 279 315 319 322 326
Non-linear      5 10 14 17Ч18 29Ч30 43 49 73 82 189 207 210 213 306Ч309 311Ч312 317 327 328
Normal state      12 15 19Ч20 23 25 105Ч107 119 216 218Ч219 223 272 280
Operator      39Ч40 42Ч44 53Ч55 90Ч93 157Ч158
Operator, human      126 243Ч248 261 263Ч264 266 268 270Ч277 279 281 283 306
Outputs      4Ч6 8Ч21 23Ч25 39 43 44 53 54 57Ч59 63 64 66 73 74 81Ч85 87Ч89 96Ч100 106 116 184Ч186 189 193Ч194 206Ч207 210 213Ч215 220 235 237 238 255Ч260 271 275Ч277 288Ч289 291 308Ч309 316 317 321Ч323 339
overlapping      12 17 41 108 118Ч120 132 289 290 292 293
Parameters      7Ч10 14 16 21Ч22 27Ч29 39 43Ч55 57Ч67 70Ч75 83 88Ч92 106Ч109 111 113Ч115 118 125Ч126 129Ч131 133Ч135 140Ч141 143Ч144 173Ч175 182Ч183 187Ч191 196Ч198 207 212Ч215 256 257 288 291 294 296Ч300 310Ч311
Partition      21Ч22 24 90 114 146 159 241 245 251 265 335Ч338 341Ч343 347Ч349 351Ч354
Pattern      47 50 53 114 181 188Ч189 193Ч197 206Ч207 214 215 240 260Ч263 269Ч272 279 280 289Ч292 294 308Ч310 313 316
Pattern recognition      38 54 127 209Ч212
Performance      9 12 15Ч16 28Ч29 43Ч55 57Ч60 64 65 71Ч75 82 90 96 111 113 115 135Ч136 158 163 179Ч182 185Ч191 196Ч198 213 215 217 218 223 224 251 257 296Ч298 305 308Ч310 318 321 323 327
Plant      29Ч30 116Ч117 186Ч188 216 219 223 276 295 317 321 322
pre-processing      128 129 269 270
Process      9Ч10 15Ч17 29Ч30 39Ч40 49 83Ч89 95 115Ч116 184 215Ч217 222Ч225 241 244Ч258 264 274 278 279 295 297 299 311Ч312 316Ч318 323 326
Relation      47 83 89 92 147 149 150 153 155Ч158 231Ч233 236 237 243 252 255 256 259Ч270 342
Relation, fuzzy      146Ч147 150 155Ч158
Relation, parity      8
Relationship      29 39 83 147 182 188Ч189 198 207 300 309 353
Relationship, analytical      84
Relationship, causal      19 106 338Ч341
Relationship, functional      57 63 64 66 74
Relationship, linear      29
Relationship, mathematical      82
Relationship, recurrence      24
Relationship, residuals-faults      17 20
Relationship, symptoms-faults      86 106
Rule, extraction      289 294Ч295 299Ч300
Rule, if-then      17 19 43Ч44 51 88 294
Sample      88Ч89 96 132Ч133 165Ч166 223 224 296Ч297 299
Selection      27 28 91 92 114 130 135 167Ч168 220 235 240
Selection, feature      215
Selection, optimal      57 63
Selection, parameters      0
Sensor      5Ч6 8 10 29Ч30 48 49 77 84 95 116 117 128Ч131 165 186Ч194 207 221 244Ч250 270 277 278 297 321 322 325
Sensor measurements      23 108 118 335Ч336 338Ч341
Sensor noise      52 55 58 64 66 67 77 198
signal      17 23 81Ч82 116 118 126Ч136 144 166Ч168 171Ч172 184Ч185 214 216 217 222 223 308 312Ч313 319
Signal, reference      95 108Ч109 116 319 322
Signal, residual      4 11Ч12 84Ч85
Similarity      109Ч113 118 129 141 146Ч147 157Ч159 196
Space      7 21 28 114 115 118 210 234 244 263 289Ч290 316 317 323 326
Space, input      39 41 43 215
Space, output      39 43
Space, state measurements      108
Space, state model      5Ч6 18
Space, state search      47 50Ч52 55Ч59 74 91Ч93
Spectrum, vibration      127Ч134 139 166Ч168 171Ч172
symptoms      4 12 23 84Ч86 106Ч108 125Ч126 222 241 245 256Ч259 262 314 315 323Ч327
Threshold      7 12 19 84 85 87 184 216 218 219 236 237 240 294 299 307 308 316
Time, computational      66 74Ч75 337
Time, elicitation      242 244 247 250
Time, steps      118 338Ч340 347 349 350
Time, window      12 25 109 110 118 216 217 220 222 340 341 347
Training      14Ч16 22Ч23 185Ч189 194Ч198 207 212Ч216 218Ч220 223Ч225 271Ч272 292 294 297 299 308Ч311 316Ч318 323 326
Training algorithm      12Ч13 22 185 195Ч196 207
Training data      10 13Ч14 212Ч213 215 218 219 316 317 323
Training process      14 22 179 186 207
Training set      16Ч17 213 223Ч225 292 314
Trees      184 211Ч213 343Ч346 352Ч353
Uncertainty      29 39Ч40 50 52 85Ч86 129 131 136 152Ч154 190 224 243Ч247 296 312Ч313 348
Variables      95 116Ч117 196Ч198 246Ч248 254 277
Variables, Boolean      27
Variables, controlled      89
Variables, flow      258 259 260 266 271Ч272
Variables, input      17 21 44 52 55 89 90 309 314
Variables, linguistic      20 245
Variables, measurements      84 315 322 323 325 326 328
Variables, observed      245 250 262 266 268 271 274 276 277Ч279 281
Variables, output      43 89 99 309
Variables, power      254 256 259 260 271
Variables, process      39 89 220
Variables, state      88
Variables, system      18 46
Weights      12Ч14 16 18 21 43 185Ч186 213Ч215 240 242 274 312Ч313
blank
–еклама
blank
blank
HR
@Mail.ru
       © Ёлектронна€ библиотека попечительского совета мехмата ћ√”, 2004-2018
Ёлектронна€ библиотека мехмата ћ√” | Valid HTML 4.01! | Valid CSS! ќ проекте